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Abstract

Quantum mechanics predicts phenomena which have no classical analogue. This
modifies our understanding of the capability of physical machines. Single photons,
together with simple interferometers and single photon detection, have been shown
to be universal for the construction of many such machines. The nascent field
of integrated quantum photonics addresses the scalability and practicality of such
machines, and their integration in miniaturized monolithic chips.

In this work, we explore the scope and flexibility afforded by integrated quan-
tum photonics, both in terms of practical problem-solving, and for the pursuit of
fundamental science. We demonstrate and fully characterize a two-qubit quantum
photonic chip, capable of arbitrary two-qubit state preparation. We make use of the
unprecedented degree of reconfigurablility afforded by this device to implement a
novel variation on Wheeler’s delayed choice experiment, and test a new technique to
obtain nonlocal statistics without a shared reference frame. We demonstrate a new
algorithm for quantum chemistry, simulating the helium hydride ion. Finally, we
demonstrate multiphoton quantum interference in a large Hilbert space, and discuss
implications for computational complexity.
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Krazy: “Why is Lenguage, Ignatz?”
Ignatz: “Language is that we may understand one another.”
Krazy: “Can you unda-stend a Finn, or a Leplender, or a Oshkosher, huh?”
Ignatz: “No,”
Krazy: “Can a Finn, or a Leplender, or a Oshkosher unda-stend you?”
Ignatz: “No,”
Krazy: “Then I would say lenguage is that that we may mis-unda-stend each udda.”

George Herriman, Krazy Kat

Chapter 1

Introduction and Essential Physics

1.1 Introduction

Over the past century, it has become increasingly apparent that Nature, at its most
fundamental level, resists analogy with human experience. Quantum theory predicts
behaviour which is not explained by any classical model. As a result, we have come
to understand that certain intuitive beliefs concerning the potential capability of
machines do not hold. Given the ability to prepare, manipulate, and measure single
quanta, there is very good evidence to suggest that we should be able to measure,
communicate and compute using techniques which have no classical analogue. This
new mode of operation promises enormous potential benefits in terms of speed,
precision, and security.

Historically, light has played a central role both in creating and answering fun-
damental questions in physics. The question of the fundamental makeup of light
was crucial to the development of quantum theory, and many experimental tests
of the most surprising predictions of quantum mechanics were first performed us-
ing visible photons. Moreover, many of the most significant modern technologies
depend entirely on the ability to manipulate and measure visible or near-visible
electromagnetic radiation.

In order to implement new quantum technologies, we must choose a quantum
system in which to encode information. Single photons can be readily generated and

1



2

detected, and generally do not suffer from the detrimental effects of noise to the same
extent as other quantum particles. As such, quantum optics represents a leading
approach to the implementation of almost all proposed quantum technologies.

Recently, it has been suggested that efficient and universal control over photonic
quantum states could be implemented in a monolithic chip, enabling the technolo-
gies previously described. Some experimental evidence already exists to support this
claim. However, in order to reach the ultimate goal of a tangible quantum advantage
over classical machines, we must overcome a number of crucial challenges in pho-
tonics engineering. It is reasonable to expect that in the course of this technological
development, we will, as a by-product, obtain tools which enable new science, and
new understanding of quantum mechanics itself.

1.2 Thesis outline

Chapter 1 begins with a brief overview of quantum mechanics, entanglement, non-
locality, and prospective quantum technologies. We discuss the standard optical
tool-kit in the context of quantum phenomena and quantum machines. We also
discuss integrated quantum photonics. In chapter 2, we a reconfigurable integrated
photonic chip incorporating two path-encoded qubits, and show that it performs
with high fidelity across a large parameter space. In the course of this work we
demonstrate two-qubit quantum state and process tomography, and violate a Bell
inequality on-chip. In chapter 3, we use this device to implement a variation on
Wheeler’s delayed-choice experiment, showing continuous morphing between wave-
like and particle-like behaviour. In chapter 4, we consider the problem of obtaining
nonlocal statistics, or certifying entanglement, without a shared reference frame. We
introduce new techniques which facilitate this task, and experimentally demonstrate
their feasibility. Chapter 5 introduces a new algorithm for quantum chemistry on a
quantum computer, and we use this algorithm to simulate the helium hydride ion.
In chapter 6, we describe a multiphoton counting system using 16 detectors, and its
application to the imaging of multiphoton quantum interference in Hilbert spaces
of dimension ∼ 50, 000. Chapter 7 concludes this thesis, with an outlook to future
work.
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1.3 Quantum mechanics

Classical physics provides a description of the world which can be pictured in the
mind’s eye. The behaviour of classical objects, fields, fluids, and machines can
be explained either in terms of effects which we as human beings experience and
observe, or by direct and satisfactory analogy to our experience.

Over the course of the 20th century, it became increasingly evident that classical
physics does not provide a complete picture of the world. In particular, two macro-
scopic physical effects — black body radiation and the photoelectric effect — cannot
be adequately explained by a classical model. Throughout more than 100 years of
discovery, Planck, Bohr, Einstein, de Broglie, Schrödinger, Dirac, and many others
developed the theory of quantum mechanics, which accommodates these phenomena
and predicts a great deal more. Quantum mechanics remains the most complete and
accurate model of physics ever developed.

In order to construct this theory, it has been necessary to accept the existence
of phenomena which resist any meaningful analogy with everyday human experi-
ence. In particular, quantum mechanics dispenses with the idea that the attributes
of physical systems are well-defined prior to the act of measurement, as well as
the notion that physics is at heart governed by deterministic processes. Quantum
mechanics predicts new phenomena, such as entanglement and nonlocality, which
are extreme in their departure from a common-sense understanding of the world.
These effects have since been widely observed in experiments, where they are most
regularly seen in nanoscale systems such as single atoms, electrons, and photons.

Very early on in the development of quantum theory, it was recognised that the
surprising new effects it predicts might be used to build machines which would not
be feasible in a classical model. Perhaps the most dramatic example of this was the
immediate application of the new theory to the development of the atomic bomb,
leading to the deaths of more than ten thousand people at Hiroshima. Quantum
theory was also instrumental in the development of field-effect transistors, atomic
clocks, hard disk drives, and the laser, which led to a revolution in information
processing, communication, and measurement. Later on, it was suggested — by
Feynman, Lloyd, Deutsch, Kitaev, and others — that coherent quantum machines,
directly manipulating pure quantum states at the lowest level, might possess a fun-
damental advantage over their classical or semi-classical counterparts for certain
tasks, including secure communication, measurement, computation, and simulation
of quantum systems themselves. In contrast with the transistor, whose functionality
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(a) (b) (c) (d) (e)

Figure 1.1: Models of physics. (a) A square-based model elegantly captures the
properties of many things: skyscrapers, chess boards, salt crystals. (b) However,
we need only find one example — which might only be seen in a challenging or
contrived experiment — to detect the incompleteness of the model. (c) �-physics
does not elegantly account for the existence of triangles. (d) The new theory of
4-physics is radical and unfamiliar, but it accommodates the new phenomenon
well. It is arguably more elegant than the old model, and provides a more complete
understanding of the world. Importantly, this new model is largely compatible
with the previous understanding. (e) 4-physics allows the construction of machines
which are difficult to build in a �-based model.

can be reproduced by a solenoid, the capability offered by these quantum technolo-
gies would be fundamentally inaccessible to classical machines. These applications
are discussed throughout this thesis.

In this section I draw on notes from Michael Nielsen and Isaac Chuang [1], John
Preskill [2], Paul Dirac [3], Keith Hannabuss [4], and Scott Aaronson [5].

1.3.1 States

Classically, an event with n possible outcomes is described by a probability distri-
bution P , corresponding to a vector of n real scalars

P = (p1, p2 . . . pn) ; pi ∈ R ; 0 ≤ pi ≤ 1 ∀ i. (1.1)

Since we always obtain some outcome, these numbers sum to 1, i.e. the 1-norm is
conserved, ∑

i

|pi| = 1. (1.2)

Quantum mechanics is the theory which naturally emerges if one attempts to re-
place these probabilities by complex amplitudes, with the condition that the 2-norm,
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rather than the 1-norm, is conserved

|ψ〉 = (a1, a2, . . . an) ; ai ∈ C ; ||ψ||2 =
∑
i

|ai|2 = 1. (1.3)

The state of the system is completely encoded in the state vector |ψ〉, which is
defined on the complex Hilbert space, H . Any ray in H corresponds to a physical
state, and two vectors represent the same state iff one is a multiple of the other.
This allows construction of superposition states

|ψ〉 = a1|ψ1〉+ a2|ψ2〉 ; |a1|2 + |a2|2 = 1. (1.4)

The Hilbert space has an inner product 〈ϕ|ψ〉, which associates each pair of vectors
|ϕ〉, |ψ〉 with a complex number, and is positive, linear, and skew symmetric

〈ϕ|ψ〉 ≥ 0 ; 〈ϕ| (a|ψ1〉+ b|ψ1〉) = a〈ϕ|ψ1〉+ b〈ϕ|ψ2〉 ; 〈ϕ|ψ〉 = 〈ψ|ϕ〉∗. (1.5)

Normalization (1.3) can then be re-expressed as 〈ψ|ψ〉 = 1. Volume in Hilbert space
is measured by the Haar measure d|ψ〉, which defines a notion of uniform sampling
or integration over H . In order to describe a composite system of two or more
objects, Hilbert spaces are joined by means of the tensor product

HAB = HA ⊗HB ; |ΨAB〉 = |ψA〉 ⊗ |ψB〉 (1.6)

We will often make reference to the Hilbert space dimension d pertaining to some
physical system of interest. By this, we will usually mean the dimension of the
smallest Hilbert space required to capture the full dynamics of the system, all things
being equal. When we model a classical coin as a two-state system, we ignore many
degrees of freedom — position in space, temperature etc. — which are not pertinent
to the problem. Similarly, a quantum coin can be modelled as a two-state system
(|H〉, |T 〉) with Hilbert space dimension d = 2.

1.3.2 Measurements

An observable is a property of a physical system which can in principle be measured.
Observables in quantum mechanics are described by Hermitian operators Â defined
on H , which map states to states:

Â : |ψ〉 → Â|ψ〉 ; Â = Â†. (1.7)



6

Any observable has a spectral decomposition

Â =
∑
i

λiΠ̂λi , (1.8)

with eigenvalues λi. Here, Π̂λi are orthonormal projectors on H , with

Π̂iΠ̂j = δij ; Π̂i = Π̂†i . (1.9)

If λi is nondegenerate, then Π̂i = |λi〉〈λi|, with 〈λi|λj〉 = δij, and {|λi〉} form an
orthonormal basis for H .

When the observable Â is experimentally measured, the outcome is always an
eigenvalue of Â. The outcome of any given measurement is in general probabilistic,
returning λi with probability

p(λi) = 〈ψ|Π̂i|ψ〉 (1.10)

At the time of measurement, the system is projected into an eigenstate of Â corre-
sponding to the measured eigenvalue λi.

|ψ〉 Detect λi−−−−−→ Π̂i|ψ〉
(〈ψ|Π̂i|ψ〉)1/2

= |λi〉 . (1.11)

This is the “collapse” of the wavefunction, whose interpretation remains contentious.
It implies that repeated further measurements of the same operator on the same
system will always yield the same eigenvalue. The expectation value of Â for a state
|ψ〉 is given by

〈A〉 =
∑
i

p(λi)λi = 〈ψ|Â|ψ〉 (1.12)

The Born rule connects amplitudes to probabilities. It gives the probability that a
system prepared in a state |ψ〉 will be detected in state |ϕ〉, as

p(ϕ|ψ) = |〈ϕ|ψ〉|2. (1.13)

1.3.3 Time evolution

Time-evolution of a classical probability distribution can be described in terms of a
stochastic matrix — a matrix of real numbers whose columns each add up to one,
preserving the 1-norm. Time evolution of a quantum state must preserve the 2-norm
(1.3). The most general class of operators which always conserve the 2-norm of a
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vector on H are the unitary matrices Û ,

Û Û † = 1 ;
∑
i

|Ûij|2 = 1. (1.14)

Time-evolution of a closed quantum system can always be described by a unitary
matrix. In the Schrödinger picture of quantum mechanics, we say that Û evolves an
input state |ψ〉in to an output state |ψ〉out, as

|ψ〉out = |ψ(t)〉 = Û |ψ〉in = Û |ψ(0)〉, (1.15)

and observables Â do not change as a function of time.

How is the unitary operator Û connected to the physical properties of the system
at hand? In general, Û is generated by a Hamiltonian Ĥ, according to the time-
dependent Schrödinger equation

i~
∂

∂t
|ψ〉 = Ĥ|ψ〉, (1.16)

where ~ is Planck’s constant. Ĥ is defined on the Hilbert space H , and has a spectral
decomposition in terms of energy eigenstates and eigenvalues, Ĥ =

∑
iEi|Ei〉〈Ei|.

When the Hamiltonian is fixed in time, the time-independent component of solutions
of (1.16) satisfy the time-independent Schrödinger equation Ĥ|ψ〉 = E|ψ〉, where E
is the energy of the state |ψ〉. The Schrödinger equation then has solutions of the
form

|ψ〉out = |ψ(t)〉 = exp

[
−iĤ(t2 − t1)

~

]
|ψ(0)〉 = Û(t2, t1)|ψ〉in. (1.17)

The Hamiltonian Ĥ thus completely determines the continuous-time dynamics of
the system, and can be related to the discrete-time unitary description of evolution
by (1.17).

As well as the Schrödinger picture of quantum mechanics, we can equivalently
adopt the Heisenberg picture, in which the state is thought of as remaining fixed,
with observables evolving under Û ,

Âout = Û †ÂinÛ . (1.18)

This picture can sometimes provide a simpler analysis, especially for systems of few
particles in many modes. The correspondence between these pictures can be seen
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as
|ψ〉out = V̂t

†
Û |ψ〉in ; Âout = V̂ †t ÂinV̂t (1.19)

where V̂t = 1 and V̂t = Û yield the Schrödinger and Heisenberg pictures respectively.
In the Heisenberg picture, unitary evolution of the observable is related to Ĥ by the
Heisenberg equation,

i
dÂ

dt
=
[
Â, Ĥ

]
. (1.20)

1.3.4 No-cloning and Heisenberg uncertainty

There exist a number of operations which are trivial to perform for classical systems,
but which are not allowed for quantum states. For example, perfect duplication of
an arbitrary unknown quantum state is impossible. To see this, consider a cloning
machine Û which copies an unknown state |ψ〉 onto an ancilla system, initially
prepared in |a〉:

Û |ψ〉 ⊗ |a〉 = |ψ〉 ⊗ |ψ〉. (1.21)

If we use the machine to copy two particular quantum states, |ψ〉 and |ϕ〉, we have

Û |ψ〉 ⊗ |a〉 = |ψ〉 ⊗ |ψ〉 ; Û |ϕ〉 ⊗ |a〉 = |ϕ〉 ⊗ |ϕ〉. (1.22)

Taking the inner product of these two equations, we have 〈ψ|ϕ〉 = (〈ψ|ϕ〉)2, imme-
diately implying that such a cloning machine cannot be universal. Note that this
does not preclude the preparation of an ensemble of identical states by repeated
application of a trusted state preparation procedure.

Quantum mechanics also places fundamental limits on the extent to which the
properties of a given ensemble of quantum states can be measured and known.
Heisenberg’s uncertainty principle states that: given as a resource an ensemble of
identical unknown states |ψ〉, the standard deviation ∆(Ĉ), ∆(D̂) in measurements
of two observables Ĉ, D̂ is bounded below by

∆(Ĉ)∆(D̂) ≥ |〈ψ|
[
Ĉ, D̂

]
|ψ〉|/2. (1.23)

That is, when Ĉ and D̂ do not commute, the better our knowledge of C, the less
information we have on D. The related (but distinct) principle of complementarity
further limits our ability to measure noncommuting observables of quantum states,
and is described in section 3.2.2.



1. Introduction and Essential Physics 9
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z

Figure 1.2: The Bloch sphere provides a geometrical representation of the state
space of a two-level quantum system — a qubit. Points on the surface of the sphere
are pure (|ψ〉 = α|0〉+ β|1〉, α2 + β2 = 1), and include the quadrant points |0〉, |1〉,
|+〉, |−〉, |+ i〉, | − i〉. These points are eigenstates of the Pauli matrices σ̂x, σ̂y, σ̂z,
and the axes are labelled correspondingly. The point at the centre of the sphere is
the maximally mixed state, 1.

1.3.5 Qubits

The basic unit of classical information is the bit, b ∈ {0, 1}. The quantum analogue
is the qubit, a two-level quantum system with Hilbert space dimension d = 2. By
analogy with classical bits, the states |0〉, |1〉 form a basis for H , and a single qubit
can occupy any normalized superposition state

|ψ〉 = α|0〉+ β|1〉 ; |α|2 + |β|2 = 1. (1.24)

Neglecting a global phase, this can be re-written as

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉, (1.25)

leading to a natural geometrical representation of the state space H of the qubit
as the surface of a unit sphere, often referred to as the Bloch sphere (figure 1.2).
Throughout this thesis we will make use of the quadrant points of the Bloch sphere

|0〉 ≡

[
1

0

]
, |+〉 ≡ 1√

2
(|0〉+ |1〉) , |+ i〉 ≡ 1√

2
(|0〉+ i|1〉) (1.26)

|1〉 ≡

[
0

1

]
, |−〉 ≡ 1√

2
(|0〉 − |1〉) , | − i〉 ≡ 1√

2
(|0〉 − i|1〉) , (1.27)
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which are eigenstates of the Pauli matrices σ̂z, σ̂x, σ̂y respectively.

Almost any two-level quantum system can be used to encode a qubit. Specific
conditions for a qubit to be useful for quantum computation are given in section
1.4.1. Qubit encodings for linear optics are discussed in sections 1.6.1 and 2.2.5.

1.3.6 Mixture

So far we have only been concerned with closed quantum systems, where there is no
uncontrolled outside influence, and all components of the system are accounted for.
In practice, we often encounter situations in which some part of the quantum system
is inaccessible to the experimentalist, often due to coupling to the environment.
Under such circumstances, many of the assumptions of the previous discussion do
not hold: namely, time evolution is no longer necessarily unitary, measurements
are not guaranteed to be orthogonal projectors, and it is no longer satisfactory to
represent states as rays in H .

In order to represent the state of a quantum system subject to unknown external
influence, we can consider a black-box device. We send into this device a quantum
state, for example |0〉. Inside the box, a demon flips a fair coin. Depending on the
outcome of the coin flip, the demon then outputs either the state |0〉, or the state
|1〉. Now, we should not write the state of the ensemble generated by this box as a
coherent superposition |+〉 = 1√

2
(|0〉+ |1〉), as the two states are chosen according

to a classical probabilistic process. We instead describe the state using a density
matrix ρ̂, defined as

ρ̂ ≡
∑
i

pi|ψi〉〈ψi|. (1.28)

For the simple example cited here, the output of the box can be written as

ρ̂ =
1

2
|0〉〈0|+ 1

2
|1〉〈1| = 1

2

[
1 0

0 1

]
= 1/2, (1.29)

which is in contrast with the density matrix of the superposition state |+〉

ρ̂+ = |+〉〈+| = 1

2

[
1 1

1 1

]
. (1.30)

All physical density matrices are semidefinite positive (ρ̂ ≥ 0), Hermitian (ρ̂ = ρ̂†),
and have trace one (Tr(ρ̂) = 1): Time evolution of a density matrix ρ̂ by a unitary
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process Û proceeds as

ρ̂ =
∑
i

pi|ψi〉〈ψi|
Û−→ ρ̂ =

∑
i

piÛ |ψi〉〈ψi|Û † = Û ρ̂Û †, (1.31)

and the expectation value of an observable Â given a state ρ̂ is given by 〈Â〉 =

Tr(Âρ̂). Density matrices provide the most general description of quantum states.
In the limit of zero coherence, the language of density operators reproduces classical
probability theory. A standard approach for the description and characterization of
open quantum processes is given in section 2.7, and a method for the generation of
mixed states from entangled two-qubit states is discussed in section 2.9.

Purity

Uncertainty in a discrete classical random variable X is captured by the Shannon
entropy,

H(X) ≡ −
∑
i

p(xi) log p(xi). (1.32)

H(X) = 1 when X is the output of a single toss of a fair coin, and H(X) = 0 when,
for example, X ∈ x0, x1 and p(x0) = 1, p(x1) = 0.

Mixed states can be thought of as possessing greater uncertainty than pure states,
since for a maximally mixed state there exists no measurement basis {|τ〉} in which
measurement outcomes are deterministic. In order to quantify uncertainty for a
quantum state we might try to apply the Shannon entropy to measurement outcomes
— however, this does not give the desired behaviour. If ρ̂ is a pure state |ψ〉〈ψ|,
then there is a conjugate measurement basis {|ψ〉∗, |ψ⊥〉∗} in which the measurement
outcome is deterministic. If we assign eigenvalues ±1 to each basis state respectively
we will always register +1, giving a Shannon entropy over measurement outcomes
of H(X) = 0. However, we could equally choose to measure in a diagonal basis,
giving uniformly distributed random measurement outcomes and thus H(X) = 1.

So, we cannot use the Shannon entropy to quantify uncertainty for a particular
state, as a good measure of states should be independent of any choice of mea-
surement basis. The von Neumann entropy is an entropic measure which solves
this problem. It is defined in a very similar way to the Shannon entropy: the von
Neumann entropy of a state ρ̂ with a spectral decomposition {λi}, {|λi〉} is

S(ρ̂) ≡ −Tr (ρ̂ log (ρ̂)) = −
∑
i

λi log (λi) = −〈log ρ̂〉 (1.33)
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which evaluates to 0 for all pure states, is maximal and equal to log d for all max-
imally mixed states (where d is the dimension of the Hilbert space), and increases
monotonically with all sensible measures of mixture. Further useful measures of the
degree of mixture of a quantum state are given by two related quantities, the purity

γ(ρ̂) ≡ Tr(ρ̂2) (1.34)

and the linear entropy SL(ρ̂) ≡ 1 − γ(ρ̂2). The purity of a pure state |ψ〉 is
Tr(|ψ〉〈ψ||ψ〉〈ψ|) = 1, and for a maximally mixed state γ (1) = 1/d.

1.3.7 Entanglement

Superposition states of a single particle, permitted by quantum mechanics as pre-
viously described, have powerful and counterintuitive implications. Single-particle
experiments such as Young’s double slit (section 3.2) show qualitative differences
in physical behaviour with respect to classical mechanics, and quantum algorithms
such as Grover search (section 1.4.1) can provide a polynomial speedup for certain
computational tasks.

However, in order to fully appreciate the extent to which quantum mechanics is
profoundly distinct from classical physics, it is important to consider multi-particle
experiments involving the related phenomena of entanglement and nonlocality. Us-
ing these phenomena we can construct games which can provably only be be won by
quantum players, and experimentally falsify the extremely natural and widely-held
notion of a local-realistic universe. Entanglement is the resource which drives most
quantum technologies, including quantum computing, metrology, simulation, and
some schemes for quantum communication. Throughout this thesis, we make use of
entangled quantum states both as a resource for computation (sections 5 and 6.3.2)
and as a basic physical phenomenon of fundamental interest (sections 3, 4, and 6.3).

Einstein, whose celebrated theory of relativity restored locality to macroscopic
physics, was intimately involved in the discovery [6], along with Podolsky, Rosen,
Schrödinger, and von Neumann, that quantum mechanics permits multipartite sys-
tems to exist in states which cannot be written as a product of their subsytems, i.e.

ρ̂A,B,C... 6=
∑
i

piρ̂A ⊗ ρ̂B ⊗ ρ̂C . . . (1.35)

Quantum states which cannot be written in this form are said to be entangled.
For such states, full knowledge of the individual subsystems does not imply full
knowledge of the true, holistic state, and vice-versa. To see the physical effect of
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this phenomenon, we can consider the example of a bipartite entangled state of two
qubits, shared between distant parties, Alice and Bob:

|Φ+〉 =
1√
2

(|0A0B〉+ |1A1B〉) . (1.36)

This state cannot be written as the product of two separate objects, as in (1.35).
When both parties measure their system in the {|0〉, |1〉} (logical) basis, we see that
Alice and Bob each have 50% probability of detecting 0 or 1, and their measurement
outcomes are also strongly correlated —Alice’s outcome is always the same as Bob’s.

P00 = |〈00|Φ+〉|2 =
1

2
; P11 = |〈11|Φ+〉|2 =

1

2
; P01 = P10 = 0 (1.37)

Correlated, probabilistic behaviour indistinguishable from that generated by this
state when measuring in the logical basis can easily be simulated classically. Flip a
coin, and if it outputs heads, give to Alice and Bob the state |00〉, otherwise provide
|11〉, i.e. generate the mixed state (|00〉〈00|+ |11〉〈11|) /2 = 1. The troubling
observation that led Einstein, Podolsky and Rosen (EPR) to conclude that quantum
mechanics was “incomplete” becomes apparent when Alice measures in an arbitrary
basis {|λ0〉, |λ1〉}.

Depending on Alice’s measurement outcome, she will remotely project Bob’s
state onto one of the conjugate basis states {|λ0〉∗, |λ1〉∗}, leaving the entire system
in |λ0Aλ0B〉

∗ or |λ1Aλ1B〉
∗ (see section 1.3.2). The implication of this effect, named

steering by Schrödinger, is that either (i) the physical state of Bob’s particle was
somehow remotely and instantaneously modified by Alice’s choice, or (ii) Bob’s
state was never well-defined in the first place. Put another way, either the universe
is nonlocal — meaning that the relationship between two separate objects cannot be
completely accounted for by a set of factors that previously acted on those objects —
or it is not realistic — the physical properties of objects do not have real, pre-existing
values, until a measurement is made — or both.

Entanglement can be measured in myriad different ways, and a full discussion of
the diverse variety of entanglement measures and associated partitionings of Hilbert
space is beyond the scope of this thesis. A comprehensive review was given by Plenio
[7]. We provide here a minimal set of examples, as reference points which will be
used throughout this thesis.

We can assert some simple and reasonable conditions for a measure of entangle-
ment:

• Separable states of the form (1.35) contain no entanglement.
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• Entanglement cannot be increased through local operations and classical com-
munication (LOCC) alone. Experimentalists in separate labs, connected only
by classical channels and each having access to one subsystem of a larger
quantum state, cannot increase the extent to which they are entangled1. This
implies that entanglement is invariant under local unitaries. A state ρ̂ can be
said to be at least as entangled than another ρ̂′ if ρ̂ can be converted to ρ̂′

through LOCC operations alone.

• Maximally entangled states exist. The Bell states

|Ψ±〉 ≡ 1√
2

(|01〉 ± |10〉) ; |Φ±〉 ≡ 1√
2

(|00〉 ± |11〉) (1.38)

form an orthonormal basis set for two-qubit states, and are the canonical
example of two-qubit maximally entangled states. Any pure or mixed state of
two qubits can be prepared from a Bell state using only LOCC operations, and
one can easily convert between Bell states using only local unitary operations
ÛA ⊗ ÛB. For multipartite systems, a satisfactory definition of maximally
entangled states has proved elusive — see, for example, results by Greenberger,
Horne and Zeilinger [8].

Two entanglement measures of particular relevance to experimental quantum
optics are the entropy of entanglement and the concurrence. As we have already
seen, individual subsystems of an entangled state are strongly dependent on one
another. If Alice and Bob share the separable pure state ρ̂AB = |0A0B〉〈0A0B|, the
reduced density matrix of Alice, tracing over Bob’s state, is ρ̂A = TrBρ̂AB = |0〉〈0|
— that is, her state is pure and independent of Bob’s system. However, when Alice
and Bob share a maximally entangled state (for example |Φ+〉〈Φ+|), although the
state of the whole system is pure, Alice’s reduced density matrix is maximally mixed,
ρ̂A = 1

2
(|0〉〈0|+ |1〉〈1|) = 1. We can use this behaviour to devise an entanglement

measure for pure states based on the generalized quantum uncertainty of the state
of one subsystem, tracing over the other, where uncertainty is characterized by the
von Neumann entropy.

The entropy of entanglement is defined [9] as

E(ρ̂AB) = S(ρ̂B) = S(ρ̂A) = S [TrB (ρ̂AB)] . (1.39)

1Experimentalists can use LOCC operations to selectively throw away states coming from some
partially entangled source, thus producing a postselected state with greater entanglement than the
source itself. However, the entanglement of the system as a whole, including those systems that
were thrown away, does not increase under LOCC operations.
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Figure 1.3: A Bell-CHSH test. Alice and Bob receive devices from a common
source or factory. Each device has a binary input (heads, H or tails, T ) and a
binary output (0, 1). The internal machinery of the devices, as well as the pre-
arranged strategy of Alice and Bob, are left unspecified — the only condition is that
the devices are separated in space and cannot communicate. Having received their
devices, Alice and Bob each flip a coin, obtaining H or T . Their task is then to
satisfy the rules illustrated in the central schematic. Namely, if one or more coins
shows heads, the output of Alice and Bob’s devices should agree, yielding 0a0b or
1a1b. Only when both parties flip tails should they disagree, outputting 0a1b or 1a0b.
It is easily confirmed that all local strategies are limited to a probability of success
of 3/4. However, when Alice and Bob share an entangled state, this bound can be
violated.

In this example of two qubits, it is natural to choose a base-2 logarithm, in which
case E ranges from zero, when ρ̂AB is separable, to log2 d = 1 for a maximally
entangled two-qubit state. A nice property of E(ρ̂AB) is that for two qubits, in
the asymptotic limit of many experiments, E is equal to the ratio m/n, where m
is the number of perfect, maximally entangled singlet states that can be reversibly
generated by LOCC operations from a source producing n copies of ρ̂AB.

The entropy of entanglement is defined only for pure states. A useful entangle-
ment measure which also works for mixed states is the concurrence, defined for a
mixed state of two qubits ρ̂ as

C(ρ̂) ≡ max(0, λ1, λ2, λ3, λ4) (1.40)

where {λi} are eigenvalues of the matrix R =
√√

ρ̂ρ̃
√
ρ̂ and ˜̂ρ = (σ̂y⊗ σ̂y)ρ̂(σ̂y⊗ σ̂y).

C ranges from 0 for a separable state and 1 for a maximally entangled state, and is
monotonically related to E. We make use of the concurrence in sections 4.5 and 5
of this thesis.
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1.3.8 Bell nonlocality

In our discussion so far, it has been necessary to use the formalism of state vectors,
operators, measurements and so on in order to provide an intuitive picture of the
character and effects of entanglement. Although we will see later on that machines
which use entanglement as a resource have the potential to dramatically affect the
real classical world, it is hard to give a good picture of the fundamental properties of
entanglement without appealing to the quantum mechanical formalism. However,
it turns out that we can construct experiments which reveal — without fully char-
acterising entanglement itself — the sharp separation between allowed behaviour of
entangled vs separable states, without the need to first choose an in-depth physi-
cal model of the world, and which rely only on simple statements about space and
probability.

Classical physics is local. Consider two parties, Alice and Bob, who are separated
in space by many light-years. They each possess a single object. Their objects may
have originated from a common source. Alice and Bob now independently and
freely choose to measure their respective objects in some way. We do not need
to use the quantum mechanical description of measurement — we simply imagine
switches allowing Alice to measure in a ∈ {a0, a1 . . .} and Bob in b ∈ {b0, b1 . . .},
yielding measurement outcomes A and B respectively. When this experiment is
repeated many times, these measurement outcomes are governed by a probability
distribution p(AB|ab).

Alice and Bob’s systems may have met in space at some point in their history,
and may have been prepared or choreographed in a particular way, giving rise to
correlations or dependencies in p. We denote this prior knowledge by a local (hidden)
variable λ, which accounts for any local information or “hidden pre-programming”
which these objects might possess. Having done so, we define a local theory as one in
which we can factorize the probability distribution [10] over measurement outcomes
as

p(AB|ab) =

∫
Λ

dλ q(λ)p(A|a, λ)p(B|b, λ), (1.41)

where q is a random variable over all possible λ ∈ Λ, which takes into account the
possibility that λ may change between measurement runs. The outcome of Alice’s
measurement thus does not depend on Bob’s choice of measurement operator, and
is fully described by local effects. Note that we arrive at this definition without any
particular choice of physical model.

In 1964, John Bell proved [11] that the predictions of quantum theory are incom-
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patible with the notion of locality captured in (1.41). Since 1964, many variations on
Bell’s proof have been developed, some of which are simpler to derive, or experimen-
tally test, than others. Here we consider a Bell test due to Clauser, Horne, Shimony
and Holt [12], in which we assume only two measurement settings a ∈ {a0, a1},
b ∈ {b0, b1}, and two measurement outcomes A,B ∈ {−1,+1} per party.

Consider the quantity

S = 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 (1.42)

where 〈AaBb〉 =
∑

A,B ABp(AB|ab) is the expectation value of the product A ·
B, given measurement settings a, b. Assuming a local model, we re-write these
expectation values using (1.41),

〈AaBb〉 =

∫
dλq(λ)〈Aa〉λ〈Bb〉λ (1.43)

where 〈Aa〉λ =
∑

AAp(A|a, λ) ∈ [−1, 1] is Alice’s local expectation value and
〈Bb〉λ =

∑
B Bp(B|b, λ) ∈ [−1, 1] is Bob’s. Now, (1.42) becomes

S =

∫
dλSλ =

∫
dλ〈A0〉λ〈B0〉λ + 〈A0〉λ〈B1〉λ + 〈A1〉λ〈B0〉λ − 〈A1〉λ〈B1〉λ. (1.44)

Since 〈A〉, 〈B〉 ∈ [−1, 1], we see that |S| ≤ |〈B0〉λ + 〈B1〉λ + 〈B0〉λ − 〈B1〉λ| and
therefore

|S| ≤ 2. (1.45)

This is the Bell-CHSH inequality, which holds for all local realistic models. Now
consider a scenario in which Alice and Bob share the Bell state |ψAB〉 = |Ψ−〉. Their
local measurement settings are now described by qubit measurement operators, Âi,
B̂i. It is helpful to express each measurement operator as a Bloch vector, which
maps a single-qubit measurement operator to R3.

Âi = ai1σ̂x + ai2σ̂y + ai3σ̂z = ~ai · ~σ, (1.46)

B̂i = bi1σ̂x + bi2σ̂y + bi3σ̂z = ~bi · ~σ. (1.47)

Single-qubit measurement operators can thus be visualized in the Bloch sphere (fig-
ure 1.2). Setting q(λ) = 1, it is then easy to show that the expectation value of AB
is simply related to the overlap of ~a and ~b,

〈ÂiB̂i〉ψ =

∫
dλq(λ)〈ψ|Âi ⊗ B̂i|ψ〉 = −~ai ·~bi = − cos(θ), (1.48)
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where θ is the angle between ~ai and ~bi. If they choose the following measurement
operators

Â0 = σ̂z ; Â1 = σ̂x ; B̂0 = − σ̂z + σ̂x√
2

; B̂1 =
σ̂z − σ̂x√

2
(1.49)

it is easy to show that S = 2
√

2 > 2, violating 1.45. The maximum value of S which
can be obtained, using any quantum state, is 2

√
2. Moreover, this value is only

obtained for maximally entangled states. Considerable insight into the fundamental
nature of quantum mechanics has been gained [10, 13, 14] through the construction
of unphysical models or objects which violate Clauser-Horne-Shimony-Holt (CHSH)
beyond 2

√
2.

Since the discovery of Bell’s theorem and its later development by CHSH, this
inequality has been experimentally violated many times. Arguably the first robust
experimental demonstration was made in 1982 by Aspect et al. [15], using entangled
photon pairs from a calcium cascade source. More recent experimental implemen-
tations have focussed either on closing the loopholes which leave such experiments
open to local-realistic interpretation [16, 17], or on the potential communication
applications of nonlocal correlations, in the form of device independent quantum key
distribution (see section 1.4.2).

Obtaining nonlocality

Not all entangled states exhibit nonlocal statistics. Pure states with any nonzero
value of the entropy of entanglement (1.39), for instance states of the form

√
1− p|Ψ−〉+

√
(p)|00〉 (1.50)

violate Bell-CHSH (although not maximally) for all p > 0. In contrast, Werner [18]
described mixed, entangled two-qubit states, showing EPR correlations and which
cannot be written as 1.35, which do not exhibit nonlocal correlations. The Werner
state with visibility V

ρ̂V ≡ V |Ψ−〉〈Ψ−|+ (1− V )
1

4
(1.51)

cannot violate Bell-CHSH for V < 1/
√

2.

Even if Alice and Bob share a maximally entangled state, nonlocal statistics
are not always revealed — for instance, if they choose their measurements from a
single orthogonal basis set. Therefore in order for Alice and Bob to guarantee that
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they will see nonlocal correlations, they must somehow co-ordinate their choice of
measurement settings. This point is discussed in detail in chapter 4 of this thesis.

1.4 Quantum technologies

“Information is physical.”

Rolf Landauer

Information must necessarily be encoded in the state a physical system. In order to
encode classical information, almost any physical system will do: human beings have
cut giant figures into the chalky substrate of the Chiltern hills, hewn laws into stone
tablets, and currently store exabytes of data in the magnetic domains of hard disk
drives. Over the past century, with the advent of quantum mechanics, it came to be
understood that information stored in the state of a quantum system — quantum
information — is very distinct from its classical counterpart.

Quantum information is encoded in the probability amplitudes of a quantum
state, and can therefore exist in an arbitrary coherent superposition. It follows that
quantum information can be encoded in an entangled state, and can thus exhibit
correlations which are classically forbidden. Moreover, as has already been discussed,
the fact that quantum states cannot be cloned places restrictions on the extent to
which quantum information can be reliably “read out” in a single shot.

These fundamental differences between allowed representations and operations
on classical and quantum information lead to new applications, devices, and tech-
nologies, which cannot be accomplished by classical means. Specifically, quantum
information science has revealed fundamentally new modes of information process-
ing, measurement, communication, and simulation, which we detail below.

1.4.1 Quantum computing

Quantum systems exhibit classically forbidden phenomena. As a result, quantum
information can be processed using operations which are forbidden for classical ma-
chines. In particular, unitary evolution of quantum information can lead to inter-
ference effects which do not occur under stochastic evolution of classical informa-
tion. This leads to the possibility of a quantum computer : an entangled, quantum,
problem-solving machine. It has been shown that by exploiting these new oper-
ations, a quantum computer could in principle solve certain computational tasks
using exponentially fewer resources than any classical machine.
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To see that quantum information can be advantageously processed using classi-
cally forbidden operations, we look to a simple and concrete example due to Deutsch
and Jozsa [19]. Given an unknown Boolean function f , the task is to determine
whether f is constant, f(0) = f(1), or balanced, f(0) 6= f(1) (i.e. we want the
parity of f). To answer this question classically, we must make two calls to f :

f(0)⊕ f(1) =

0 if f is constant

1 if f is balanced
(1.52)

where ⊕ denotes addition mod 2. However, implementing f using a two-qubit
entangling gate Ûf |x〉|a〉 = |x〉|f(x)⊕ a〉, we can effectively make a single call to f
with a superposition of both arguments at once

Ûf |+〉 ⊗ |−〉 =|0〉 ⊗ |f(0)⊕ 0〉 − |0〉 ⊗ |f(0)⊕ 1〉+ (1.53)

|1〉 ⊗ |f(1)⊕ 0〉 − |1〉 ⊗ |f(1)⊕ 1〉. (1.54)

Applying a Hadamard operation to the first qubit, complex amplitudes in (1.54)
destructively interfere to give

(Ĥ ⊗ 1)Ûf |+〉 ⊗ |−〉 =

±|0〉 ⊗ |−〉 if f is constant

±|1〉 ⊗ |−〉 if f is balanced
(1.55)

Measurement of the first qubit in the logical basis then immediately reveals the
nature of f . Note that we only obtain a global property of f , not full information on
the mapping (see section 6.3.5). This algorithm is easily generalized to systems of n
qubits, where it requires exponentially fewer calls to f with respect to all classical
algorithms.

The Deutsch-Josza algorithm provides an attractive illustration of the character-
istic properties of many quantum algorithms — dependence on interference of com-
plex amplitudes, qubits, entangling gates, and ultimately an exponential speedup
over classical machines. Unfortunately, the problem of Deutsch-Josza is rather con-
trived, and this algorithm has no known useful application2. Moreover, at the cost
of deterministic operation, randomized classical algorithms perform very well at this
task, classifying f in polynomial time, and furthermore the leap from f to the oracu-

2In terms of computational complexity, Deutsch-Josza provides an oracle relative to which EQP
(the class of problems exactly soluble by a quantum computer in polynomial time) is distinguishable
from P (decision problems soluble in poly-time by a deterministic Turing machine). However, we do
not expect that a Deutsch-Josza machine would have direct “economically significant” implications!
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lar Ûf arguably renders the quantum-classical comparison somewhat unrealistic. As
a result, the main utility of Deutsch-Josza is pedagogical. A similar role is played
by Grover search, an algorithm first described in 1995 by Lov Grover. Grover’s
algorithm uses a single quantum system, together with a specific class of oracle,
to accomplish a polynomial speedup over classical machines for a task resembling
database search.

Long before Deutsch-Josza and Grover search, Richard Feynman [20, 21] laid out
the first strong argument as to why one might build a quantum computer. Feynman
argued that since the state of a quantum system can exist in a coherent superposition
over all allowed eigenstates, and since a system of n particles has exponentially many
eigenstates in general, it is likely exponentially hard to simulate such systems using
a classical computer. Feynman went on to propose that a quantum computer or
quantum simulator should be capable of reproducing the dynamics of a system of
interest, in a controlled way, using only polynomial resources. We can imagine
that much as aircraft wings are numerically simulated prior to construction, drugs,
materials and other atomic-scale systems might be designed on a quantum computer
prior to synthesis in the laboratory. This application is potentially economically very
significant, and would have a dramatic effect on science, medicine, and engineering.
Quantum simulation is discussed in further detail in chapter 5 and section 6.3 of
this thesis.

Quantum simulation has almost the opposite problem to Grover search and
Deutsch-Josza. Quantum simulators constitute arguably the most practically useful
known application of a quantum computer, but it remains very hard to prove either
(i) that atomic/molecular systems of interest cannot be efficiently simulated by a
classical machine or (ii) that all physical systems can be efficiently simulated by a
quantum computer!

In 1994, Peter Shor first described an algorithm [22] which has since become
the best-known proposed application for quantum computation. Shor showed that
a universal quantum computer, capable of manipulating, entangling and measuring
a large number of qubits, could be used to solve the prime factoring and discrete
logarithm problems in polynomial time. This was an extremely powerful result, as
the problem of prime factoring is strongly believed to be computationally intractable
for classical machines, and is also useful for real-world practical tasks. Specifically,
prime factoring is the task of identifying the prime factors a, b of a (large) com-
posite L-bit number N = ab. The best-known classical algorithms run in time
exponential in L, while Shor’s algorithm runs in O(L3) time. A scalable implemen-
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tation of Shor’s factoring algorithm would break most (but not all) existing classical
encryption algorithms, including Rivest-Shamir-Adleman (RSA) and elliptic-curve
cryptography.

We have outlined above a few quantum algorithms most relevant to this discus-
sion. A great many quantum algorithms have since been developed, most of which
are outside the scope of this thesis. In chapter 5, we introduce a new algorithm
for simulation of quantum chemistry. In section 6.3.2, we experimentally demon-
strate a relatively new quantum algorithm, BosonSampling, which has particular
relevance for the photonic platform addressed here.

The DiVincenzo criteria

Although the quantum algorithms described above could in principle be imple-
mented using special-purpose machines, one of the principal goals of quantum infor-
mation science is the design and construction of general-purpose, universal quantum
computers. Such a machine could be reconfigured, or programmed, to implement any
conceivable quantum algorithm, and is arguably the most ambitious and potentially
rewarding goal of the entire field of quantum information. The fact that a univer-
sal quantum computer could in principle be constructed under the known laws of
quantum mechanics has been proven in works by Barenco, Bennett, Cleve, Deutsch,
Ekert, DiVincenzo, Lloyd, Shor, Smolin, and many others. See, for example, refs
[23–26].

In order to build such a machine we must first select a physical architecture,
amenable to experimental implementation, in which to encode, manipulate and mea-
sure quantum information. Although we can construct quantum algorithms which
provably cannot be efficiently performed by any known machine [1], any successful
platform for quantum computing will require experimental resources which grow at
most polynomially with the size of the quantum circuit, or the number of elementary
operations required. In order to evaluate the suitability of proposed architectures
and technologies for quantum computing, we make use of the DiVincenzo crite-
ria [27] — the basic experimental criteria for any scalable platform for quantum
computing. Here we list the five criteria most pertinent to our discussion:

• A scalable system with well-characterized qubits. Single qubits, sup-
porting coherent quantum superposition states, upon which quantum infor-
mation can be encoded. A single qubit should not be prohibitively experi-
mentally demanding to implement, and experimental resources should scale at
most polynomially with the total number of qubits.
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• The ability to prepare a simple fiducial state. We must be sure of the
initial state of the system. This fiducial state need not be entangled.

• Evolution under a universal set of quantum gates. Lloyd [25], Di-
Vincenzo [23] and many others have described small, discrete sets of elemen-
tary operations on qubits, which can be combined to implement any quan-
tum algorithm. One example of such a universal gate set is formed by the
(maximally entangling) two-qubit controlled-not (CNOT) gate, together with
generic single-qubit operations. All such universal gate sets include at least
one entangling operation.

• Decoherence times much longer than the gate operation time. As has
already been discussed (section 1.3.6), interaction with the environment leads
drives the state of the system towards a mixed state, in a process referred to
as decoherence. Since a maximally-mixed state can be modelled by a classical
probability distribution, decoherence almost always leads to failure of quantum
algorithms. The characteristic rate at which the purity of the qubit state
degrades, which is related to the strength of coupling to the environment, must
therefore be slow with respect to the time taken to perform a gate operation.

• Qubit measurement. The architecture must allow single-qubit quantum
measurements, as described in section 1.3.2. Measurement in the z-basis can
be combined with a universal gate set to evaluate any possible observable on
the system of qubits.

Quantum computation is widely believed to be the most technically challenging
of all proposed quantum technologies, and it is likely that any platform satisfying
the DiVincenzo criteria would also be capable of implementing other applications,
described in sections 1.4.2 and 1.4.3.

Fault tolerance

No useful machine exists in a vacuum. All practical machines are subject to the
influence of noise, error, and loss, due to both interaction with the environment
and imperfect fabrication or operation of the machine itself. Classical computers
overcome noise by two complementary methods. First, the reliability of individual
components in modern classical computers is extremely good: typical error rates
are on the order of 1 in 10× 1017 operations. The overwhelming majority of these
few errors are then detected and corrected by means of redundancy-based error-
correcting codes. The simplest example is to encode the bit state 0 on n bits,
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0000 . . ., and similarly for 1, in which case error can be exponentially suppressed by
means of a simple majority-voting system.

Error correction is similarly essential for quantum computers. Without it, the
probability of success of any realistic quantum computation falls off exponentially
as the system evolves in time. Fortunately, a number quantum error-correcting
codes(ECCs) [1, 28–30] have been developed which effectively protect quantum
states against noise. Owing in part to the no-cloning theorem, these codes are
necessarily distinct from the simplest classical techniques, however they are still
largely based on redundancy, in that a single logical qubit is represented by a num-
ber of system qubits, whose state is monitored and adjusted to correct errors. As
with classical ECCs, quantum ECCs therefore demand an overhead, in terms of
both qubit and gate count, with respect to the naïve implementation. In practise,
this overhead can be extremely large [31]. The overhead for a given choice of ECCs
is guaranteed to be polynomial in problem size only when the intrinsic error rate is
below a certain threshold value. This is the threshold theorem [32], without which
scalable quantum computing would likely not be a realistic prospect.

1.4.2 Quantum communication

Prime factoring can be seen as a one-way function, which is hard to compute,
but easy to check. The security of almost all digital communication is currently
guaranteed by the difficulty of the forward problem, which is the basis of the RSA
algorithm for public-key cryptography. RSA provides a method by which two parties
can securely communicate, without having to first share a large one-time pad. While
RSA has been enormously successful, it is by no means perfect. First, it is not known
whether factoring is fundamentally classically intractable: at any time, an efficient
classical factoring algorithm could suddenly be discovered, breaking the security of
RSA. Secondly, an eavesdropper with access to a scalable quantum computer could
use Shor’s algorithm to silently decrypt and listen-in on this communication.

While quantum information science enables a realistic attack on RSA, it also pro-
vides a new technique for secure communication, based on quantum theory itself.
In 1984, Bennett and Brassard [33] (BB84) described a method allowing two distant
parties to communicate securely over an untrusted channel, using quantum states
as the information carrier. This technique, together with its many derivatives, is
referred to as quantum key distribution (QKD). The security of QKD is guaranteed
by the axioms of quantum mechanics, in particular the no-cloning theorem (section
1.3.4). In the event that an eavesdropper successfully reads private information from
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the channel, the state of the quantum system carrying that information is measur-
ably disturbed, in which case the honest parties cease communication. In order to
eavesdrop on a channel secured by QKD3, an attacker would need to discover physi-
cal effects which contradict no-cloning, which would be considerably more surprising
than the discovery of a polynomial-time classical factoring algorithm.

At the time of writing, QKD is one of the few quantum technologies to have
reached the market. This reflects the relative experimental accessibility of the task.
All commercial QKD systems use photons as the information carrier, owing to the
many advantages described in section 1.6.1. Most QKD systems either time-bin or
polarization encoding, carrying single photons or weak coherent pulses over optical
fibre or in free-space.

Recently, Lydersen et al. reported a functional attack on commercial QKD sys-
tems [34], which exploits details of the technical implementation to gain control
over the measurement apparatus and steal information. Device-independent quan-
tum key distribution (DI-QKD) [35], which necessarily depends on entanglement
and nonlocal correlations, has been proposed as a solution to this class of attack. In
chapter 4, we introduce a number of theoretical and experimental techniques which
may facilitate DI-QKD in real-world scenarios.

1.4.3 Quantum metrology

We have argued that since computation is a physical process, quantum mechanics
can be used to compute. Moreover, an advantage in computation can be gained by
using a quantum machine. Similarly, measurement is physical. It turns out that
by using a quantum apparatus to probe a system of interest, a number of tangible
advantages can be gained with respect to classical methods [36, 37].

Classical measurements are fundamentally limited by what is known as the shot
noise, or the standard quantum limit. Averaging over n measurements of a given
observable A, by the central limit theorem the statistical uncertainty in the measured
value of A scales as

∆A ∝ 1/
√
n. (1.56)

However, by probing the sample using entangled quantum states such as those de-
scribed in section 1.5.3, followed by quantum measurement of the resulting state,
this uncertainty can in principle be reduced to a reciprocal scaling ∆A ∝ 1/n, vio-
lating the standard quantum limit. This method, known as quantum metrology, is

3Assuming a perfect experimental implementation, see ref. [34].
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particularly advantageous when the sample is extremely fragile and prone to damage
by the measurement process itself, as it allows the same amount of information to
be obtained using fewer discrete measurements.

We recently performed an experimental implementation [38] of a new scheme
for loss-tolerant quantum metrology [39], which makes use of the photon counting
capability developed in section 6.2. Unfortunately, this work was not completed in
time for inclusion in this thesis.

1.5 Light

Throughout this thesis we will examine the use of quantum states of light as a testbed
for fundamental quantum mechanical phenomena, as well as the basic substrate
upon which quantum-photonic technologies are built. We now lay out a theoretical
framework to describe both classical and quantum states of light, in particular the
quantization of the electromagnetic field, following the approach of Venkataram [40].
The following analysis is presented in Gaussian units.

1.5.1 Light as a wave

Classical electromagnetic effects are governed by Maxwell’s equations:

∇×H =
1

c

(
∂D

∂t
+ 4πJf

)
(1.57)

∇× E = − 1

c

∂B

∂t
(1.58)

∇ ·B = 0 ∇ ·D = 4πρf (1.59)

where H is the magnetic field, D = εE is the electric flux density, Jf is the free
current density, E is the electric field, and B = µH is the magnetic flux density.
ρf is the free charge density or charge per unit volume, and c is the speed of light.
The dielectric permittivity ε and the magnetic permeability µ are related to the
dielectric and magnetic susceptibilities χe, χm by

ε(E) = ε0 [1 + χe (E)] (1.60)

µ(H) = µ0 [1 + χm (H)] (1.61)

where ε0 and µ0 are the permittivity and permeability of the vacuum, respectively.

In the absence of charges (ρf = 0) and currents (Jf = 0), Maxwell’s equations



1. Introduction and Essential Physics 27

reduce to

∇× E = −1

c

∂B

∂t
; ∇×B = +

1

c

∂E

∂t
; ∇ · E = 0 ; ∇ ·B = 0. (1.62)

For convenience we have taken c = 1/
√
µε to be the phase velocity of light in the

medium. The refractive index n of the material

n =

√
µε

µ0ε0

=
c0

c
(1.63)

relates c to the speed of light in the vacuum c0. Taking the curl (∇×) of the first
two expressions in (1.62) we arrive at the electromagnetic wave equations

∇2E =
1

c2

∂2E

∂t2
; ∇2B =

1

c2

∂2B

∂t2
. (1.64)

The solutions E (r, t) and B (r, t) to these equations represent time-dependent elec-
tric and magnetic fields — light — propagating through the medium at c ∼ 3× 108

m/s. These solutions are subject to the constraints that B and E should be per-
pendicular both to each other and the axis of propagation, and in phase, but may
otherwise be very varied in form.

One solution to (1.64) for an inhomogeneous dielectric is a linearly polarized
monochromatic field with wavelength λ,

E(r, t) = A(r) ei(ωt−φ(r)) (1.65)

where ω = 2πc/λ is the angular frequency and A is the amplitude vector which
determines the polarization. When the medium is homogeneous, or in free space,
an even simpler solution is given by a plane wave travelling in the ẑ direction

E(r, t) = Aei(ωt−kz) (1.66)

where k = ω/c is the wavenumber.

We will now consider a single eigenmode of the electromagnetic field with wave
vector k = kk̂, where k̂ is a unit vector in the direction of propagation. For a mode
k, solutions of (1.64) can be separated into a time-dependent complex function αk(t)

and a spatial function E0(r), where by convention the electric field Ek is taken to
be the real part of the product of αk and E0

Ek(r, t) ≡ Re(αk(t)E0(r)) = α∗k(t)E∗0(r) + αk(t)E0(r). (1.67)
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For Ek and αk to be consistent with the wave equation (1.64), they must satisfy

αk(t) = αk(0)eickt ; ∇2Ek + k2Ek = 0. (1.68)

The second of these two expressions is the Helmholtz equation. The magnetic field
must be perpendicular to both E and the direction of propagation, Bk (r, t) =

k̂ × Ek (r, t) and is thus related to α(t) and E0(r) by

B(r, t) =
i

k
[α∗k(t)∇× E∗0(r)− αk(t)∇× E0(r)] . (1.69)

In order to find the Hamiltonian of the electromagnetic field, we must integrate the
energy density of the electric and magnetic fields over all space,

H =

∫
Hd3r =

∫
1

8π

(
E2 + B2

)
dr. (1.70)

Combining (1.67) and (1.69), together with careful choice of normalization of α(t)

and E0(r), we arrive at a Hamiltonian for the electromagnetic field in a mode k, in
terms of the ansatz αk(t)

Hk =
~ck
2

(α∗kαk + αkα
∗
k) = ~ck|αk|2. (1.71)

Here, ~ is simply a constant with units of action. As we will see in section 1.5.2,
this notation is chosen for a reason!

Interference

When two light fields occupy the same region of space, interference effects occur.
The frequency of light is generally speaking too high (5 × 1014 Hz) for the electric
field to be observed directly, and most measuring devices are only sensitive to the
time-averaged intensity I = 〈|E(r, t)|2〉. The net electric field is the sum over modes,
E(r, t) =

∑
i Ei(r, t). For the simple example of interference of two linearly polarized

monochromatic fields (1.65) E1,E2, the intensity observed at a point r is then given
by

I(r, t) = 〈|E1(r, t)|2〉+ 〈|E2(r, t)|2〉+ 〈E1 · E∗2〉+ 〈E∗1 · E2〉 (1.72)

= I1 + I2 + 2(A1 ·A2) cos [(ω1 − ω2)t− (φ1(r)− φ2(r))] . (1.73)
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We thus observe sinusoidal interference patterns in the measured intensity, depend-
ing on the relative phase and frequency of the two sources. Note that the strength
or contrast of the observed interference fringe

C ≡ Imax − Imin

Imax + Imin

∝ A1 ·A2 (1.74)

depends on the polarization of the two sources: if they have orthogonal polarization
the (A1 ·A2) term vanishes and C → 0.

Guided modes

So far, our analysis has been focussed on light in a vacuum or homogeneous medium.
Under these conditions, the propagation of laser light is well-approximated by Gaus-
sian beam optics, in which the time-independent component of the electric field is
normally distributed about the beam centre,

E0(r) = EA · e−||r||
2/ω2

0 . (1.75)

Throughout this thesis, as well as Gaussian beam optics in free space, we will make
use of optical fibres and waveguides to confine and direct monochromatic light and
single photons on-chip. These structures are constructed from two different materi-
als: a core with refractive index n1, in which the majority of the propagating electric
field is confined, and a cladding constituting the substrate or surroundings of the
waveguide, with index n2. In this discussion we will describe the confinement and
guiding of light in an idealized 1D rectangular waveguide, as shown in figure 1.4.
All waveguides used in this thesis are rectangular. Further technical discussion of
waveguide geometries and material systems is given in section 1.6.5.

A working understanding of the confinement of light in an optical waveguide
can be obtained from the ray-optics picture, in which a ray of light propagates in a
straight line in the waveguide structure. At the interface between core and cladding,
the ray is completely internally reflected if and only if the angle of incidence φ is
less than the critical angle θc, which can be derived from Snell’s law

n1 sin θi = n2 sin θc ; θc = arcsin
n2

n1

. (1.76)

If this condition is not satisfied, the ray is no longer confined in the waveguide and
radiates into the cladding, where it is lost. Note that when the waveguide is curved
or has a rough interface between core and cladding, there is a greater chance that
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Core

Cladding

(a) (b) (c)

Tail

Figure 1.4: Optical waveguides (a) Rectangular waveguide showing core and
cladding, in a bend structure. (b) In the ray-optics picture, light is confined in
the waveguide by total internal reflection when n1 sin(π/2− φ) ≥ n2. (c) 1D refrac-
tive index profile of a rectangular waveguide, and a single spatial mode.

the ray will meet the interface at an obtuse angle and be lost. Hence in order to
achieve low-loss waveguides, we should engineer smooth interfaces and gentle curves.
From this intuitive picture we can also see that a greater refractive-index contrast

∆n =
n2

1 − n2
2

2n2
1

(1.77)

between core and cladding leads to a larger critical angle, allowing tighter bends
and thus smaller, more compact structures.

Given a specific device geometry, the Helmholtz equation 1.68 is only satisfied
only for a discrete subset of spatial distributions E0, referred to as waveguide modes.
Owing to the complexity and breadth of possible device geometries, the form of these
modes must in general be calculated using numerical mode solvers (FIMMWave [41],
Phoenix [42] etc.), but for a simple one-dimensional model we can find an analytic
solution.

Consider for example the refractive index profile shown in figure 1.4 for a waveg-
uide of width 2a

n = n1 |x| < a (1.78)

n = n2 |x| ≥ a. (1.79)

Taking electric field propagation to be in the transverse electric (TE) mode, which
for a particular choice of coordinate system is equivalent to saying that Ey is the
only nonzero component of E0, (1.68) becomes

∂Ey
∂x2

= γ2Ey |x| < a ;
∂Ey
∂x2

= −κ2Ey |x| ≥ a (1.80)

in the core and cladding respectively, where γ2 and κ2 are real parameters which
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depend on both on the structure and material of the waveguides, and on the wave-
length of incident light. These equations have solutions of the form

Ey = G1e
γx x ≤ −a (1.81)

Ey = G2e
iκxG3e

−iκx −a < x < a (1.82)

Ey = G4e
−γx x ≥ a (1.83)

where Gi are constants which depend on the waveguide parameters and the optical
wavelength. This captures an important property of optical waveguides which is not
described by the ray-optics model: figure 1.4(b) suggests that under total internal
reflection the optical field is always fully confined within the core and does not
impinge on the cladding, whereas in practise this is not the case. We see from
(1.81) and (1.83) that outside the waveguide core the electromagnetic field is not
zero, instead falling off exponentially with distance. This is the evanescent field of
the waveguide mode, which permits two waveguides to be coupled together without
bringing the cores into contact. This is discussed in further detail in section 2.2.2.

We have already seen (1.73) that the contrast of optical interference is reduced
when the two sources have differing polarization. By a similar argument, in order
to see high-contrast interference between light sources in guided modes, we should
engineer the waveguide, through control of the geometry, size, and refractive index,
so as to support only a single guided mode — a single solution of (1.68) — for a
target wavelength λ. These are known as single-mode (as opposed to multimode)
waveguides, and are used throughout this thesis.

1.5.2 Light as a photon

Before examining the quantum-mechanical description of light, it will helpful to
revise the properties of the classical and quantum harmonic oscillators. In a classical
simple harmonic oscillator (SHO), such as a spring or pendulum with spring constant
k, the force acting on a particle is proportional to its displacement, F = −kx. The
dynamics are described by the classical SHO Hamiltonian

KE =

∫
F · v dt =

1

2
mv2 =

p2

2m
; PE =

∫
k · x dx =

1

2
kx2 =

mω2

2
(1.84)

H = KE + PE =
p2

2m
+
mω2x2

2
(1.85)
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where ω =
√
k/m = 2πf is the angular frequency. From the Hamilton equations

ṗ = −∂H
∂x

, ẋ = +∂H
∂p

, we arrive at the SHO equation of motion

d2x

dt2
= −ω2x (1.86)

In close analogy with the general solution of Maxwell’s equations (1.67), a general
solution to (1.86) is α(t) = α(0)e−iωt, an unphysical (complex) ansatz. Just as E,
B are related to the real and imaginary parts of αk for the electromagnetic field,
the complex components of α(t) are mapped by convention to the position and
momentum of the SHO, respectively:

x(t) =

√
~

2mω
[α + α∗] ∝ Re [α(t)] ; p(t) = i

√
~mω

2
[α∗ − α] ∝ Im [α(t)] (1.87)

α(t) =
1√
2~

[√
mωx(t) +

i√
mω

p(t)

]
. (1.88)

Hence α can be thought of as providing a compact phase-space representation of the
state of the SHO, (x, p). Here we have assumed that α(t) is dimensionless, allowing
us to rescale by ~, a constant with units of action. The SHO Hamiltonian (1.85)
can then be re-written in terms of α(t) as

H =
~ω
2

[α∗(t)α(t) + α(t)α∗(t)] . (1.89)

We now turn to the quantum harmonic oscillator (QHO). The state of a quantum
particle is represented by a state vector |ψ(x)〉 in Hilbert space, and the position
and momentum observables become non-commuting Hermitian operators acting on
this space

x̂ = x ; p̂ = −i~ ∂
∂x

(1.90)

with [x̂, p̂] = i~ (see section 1.3.4). As with the SHO (1.85), the QHO Hamiltonian
is then given by

Ĥ =
p̂2

2m
+
mω2x̂2

2
(1.91)

and |ψ〉 satisfies the time-independent Schrödinger equation, Ĥ|ψ〉 = E|ψ〉. The
QHO has an analogous solution to that of the SHO (1.85), where α, α† are replaced
by their quantized counterparts

â =

√
mω

2~

(
x̂+

i

mω
p̂

)
; â† =

√
mω

2~

(
x̂− i

mω
p̂

)
(1.92)
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leading to

x̂ =

√
~

2mω

(
â+ â†

)
; p̂ = i

√
~mω

2

(
â† − â

)
. (1.93)

The operators â† and â are known as the creation and annihilation operators for the
QHO, respectively. â, â† are not real observables, and are therefore not Hermitian.
In contrast with the classical case, however, they do not commute, with

[
â, â†

]
=

1. They are jointly named the ladder operators, since their action on an energy
eigenstate is to raise or lower the energy by a single quantum ~ω,

â†|n〉 =
√
n+ 1|n+ 1〉 ; â|n〉 =

√
n|n− 1〉 ; â|0〉 = 0. (1.94)

We can also define the number operator N̂ ≡ â†â, which “counts” the number of
quanta in an energy eigenstate, N̂ |n〉 = n|n〉.

Using (1.93) together with the commutation relation ââ† = â†â + 1, the QHO
Hamiltonian (1.91) can be re-written as

Ĥ =
~ω
2

(
â†â+ ââ†

)
= ~ω

(
â†â+

1

2

)
, (1.95)

which has eigenstates |n〉 of energy En = ~ω
(
n+ 1

2

)
, n ∈ {Z : n ≥ 0}. Note that

the energy of the QHO ground state |0〉 is not zero, E0 = 1
2
~ω > 0.

We now proceed to quantization of the electromagnetic field. We first note the
similarity between the Hamiltonian of the linear electromagnetic field in a mode k

(1.71) in terms of an ansatz αk(t), and the QHO Hamiltonian (1.95) in terms of the
annihilation operator â. Similarly, there is a corresponence between the position and
momentum operators x̂, p̂ and the electric and magnetic fields, E,B. This allows
us to take an analogous approach to the SHO, replacing αk and α∗k by the ladder
operators â†k, âk acting on a mode k, and choosing a dispersion relation ω = ck:

HEMF
k =

~ck
2

(α∗kαk + αkα
∗
k) ; ĤQHO =

~ω
2

(
â†â+

1

2

)
(1.96)

→ Ĥk = ~ω
(
â†kâk +

1

2

)
(1.97)

Now, the state of the electromagnetic field is represented by a vector |ψ〉 in Hilbert
space H , and â†k, âk are ladder operators acting on H which create or destroy a
photon of energy ~ω, respectively:

â†k|n〉k =
√
n+ 1|n+ 1〉k ; âk|n〉k =

√
n|n− 1〉k ; âk|0〉k = 0. (1.98)



34

The eigenstates |n〉k of the quantized electromagnetic Hamiltonian (1.97) are called
the number or Fock states4, and form an orthonormal basis for H . A mode k in
Fock state |n〉k is interpreted as literally containing 〈n|â†kâk|n〉 = n photons, n ∈ Z.
Note that a mode containing zero photons still has nonzero energy, E0 = ~ω/2: this
is the vacuum energy of the electromagnetic field. Any Fock state can be written in
terms of the vacuum state |0〉k,

|n〉k =
1√
n!

(â†k)n|0〉k. (1.99)

and a general superposition state in mode k can be written in the Fock basis

|ψ〉k =
N∑
n=0

bn|n〉k. (1.100)

To summarize, we have seen that quantization of the electromagnetic field in a
single mode k leads to solutions which are strongly analogous to the energy eigen-
states of the quantum harmonic oscillator, corresponding to the Fock states |n〉 of
n photons, each with energy ~ω. All of the experiments described in this thesis,
together with most quantum photonic technologies, depend on the use of many pho-
tons in many modes, In the next section we outline basic notation and methods used
to deal with such states, as well as some associated physical phenomena.

Photons in modes

Our discussion so far has been limited to the creation and annihilation of photons
in a single spatial mode k. The experimental work presented in this thesis, however,
deals with 2 ≤ p ≤ 6 photons in 2 ≤ m ≤ 21 modes, and makes use of both time and
polarization degrees of freedom. In order to provide a more complete framework,
we map (â†k, âk) → (â†j, âj) where j indexes any allowed field mode of the system,
including modes in time, space, frequency and polarization. We will principally
be concerned with photons which are indistinguishable in the sense that any two
photons can be swapped in any experimental degree of freedom without changing
the state of the overall system. Indistinguishable bosons in modes i, j obey the
canonical commutation relations[

âi, â
†
j

]
= δij1 ;

[
âi, âj

]
=
[
â†i , â

†
j

]
= 0, (1.101)

4After V. A. Fock, whose name is also given to the Hartree-Fock method described in section
5.3.2
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which capture many important properties of the photonic ladder operators, and will
be useful throughout this discussion.

The Hilbert space H p
m for the state of p indistinguishable photons in m modes

is generated by the tensor product (see section 1.3.1), and we write the eigenstates
of an arbitrary number of photons p =

∑
j nj occupying m modes in Fock notation

as

|n〉1 ⊗ |n〉2 . . . |n〉m = |n1, n2, . . . nm〉 =

[
m∏
j=1

1√
nj!

(
â†j

)nj]
|0〉 (1.102)

where |0〉 ≡ |0〉0⊗|0〉1 . . . |0〉n = |00 . . . 0〉 is the m-mode vacuum. These states form
an orthonormal basis for the Hilbert space H p

m of p photons in m modes, and an
arbitrary pure superposition state can therefore be written as

|ψ〉 =
d∑
i

bi|n1,i, n2,i . . . nm,i〉 =

[
d∑
i

bi

m∏
j=1

1√
nij!

(
â†j

)nij]
|0〉 , (1.103)

where d is the Hilbert space dimension and
∑

i |bi|2 = 1. Many experiments in
quantum optics deal with a large number of modes and a fixed number of photons.
The Hilbert space dimension d of H p

m corresponds to the number of unique configu-
rations of p indistinguishable photons in m modes, given by the binomial coefficient

d =

(
m+ p− 1

p

)
; D =

(
m

p

)
, (1.104)

where D < d is the dimension of the collision-free subspace in which no two photons
occupy the same mode.

The coherent state

The coherent state |α〉 is the state of the quantized electromagnetic field whose
dynamics most resemble a classical harmonic oscillator. It provides a good approx-
imation to the state generated by a continuous-wave laser — an essentially classical
state of light. It will be important to contrast the behaviour of the coherent state
against that of Fock states, in order to motivate the use of single-photon sources
throughout this thesis. Here we follow Roy Glauber [43].

The coherent state is defined as an eigenstate of the annihilation operator â with
eigenvalue α,

â|α〉 = α|α〉. (1.105)
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Expressing |α〉 in the Fock basis (1.100), |α〉 =
∑∞

n=0 bn|n〉, we can re-write (1.105)

∞∑
n=1

bn
√
n|n− 1〉 = α

∞∑
n=0

bn|n〉 (1.106)

and by re-indexing the left hand side,

∞∑
n=0

bn+1

√
n+ 1|n〉 = α

∞∑
n=0

bn|n〉 → bn+1 =
α√
n+ 1

bn for n ≥ 0.

(1.107)

This recursive expression provides the superposition coefficients bn = αn√
n!
b0. Since

the state must be normalized 〈α|α〉 = 1, we have 1/|b0|2 = e|α|
2 . Choosing the phase

of b0 so as to make it real, we arrive at a Fock-basis form for the coherent state,

|α〉 = e−
|α|2
2

∞∑
n=0

αn√
n!
|n〉 = eαâ

†−α∗â|0〉. (1.108)

The coherent state |α〉 has average photon number 〈n〉 = |α|2, but in contrast with
the Fock state |n〉 there is a nonzero probability of detecting more than n photons
simultaneously. In general, the probability P (n) of detecting photon number n from
|α〉 has a Poissonian distribution:

P (n) = |〈n|α〉|2 = e−|α|
2 |α|2n

n!
. (1.109)

The normalized second-order correlation function for photons generated in a
single spatial mode at times t = 0, t+ τ

g(2)(τ) =
〈â†0â†τ âτ â0〉
〈â†0â0〉〈â†τ âτ 〉

; g(2)(0) =
〈(â†)2â2〉
〈â†â〉2

=
var(n)− 〈n〉
〈n〉2

+ 1, (1.110)

characterises the relationship between the mean and variance of the photon num-
ber distribution, and is similar but not equivalent to the classical cross-correlation
function (6.2). For the coherent state,

g(2)(0) =
〈(â†)2â2〉
〈â†â〉2

=
〈α|α∗N̂α|α〉
〈α|α∗α|α〉

=
|α|4

|α|4
= 1 (1.111)
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However, for a Fock state |n〉, g(2)(0) is less than unity

g(2)(0) =
〈(â†)2â2〉
〈â†â〉2

=
〈n|(N̂ − 1)N̂ |n〉
〈n|N̂ |n〉2

= 1− 1

n
≤ 1. (1.112)

For a given light source, if g(2)(0) < 1 then the photon-number distribution P (n)

has a smaller variance than the equivalent Poisson distribution, and the source is
said to be sub-Poissonian and nonclassical. This effect is referred to as photon
antibunching, in the sense that it is unlikely or impossible for many photons to
arrive simultaneously at the detector. For incoherent (chaotic) light the opposite is
true, and the twofold detection probability is instead enhanced with respect to that
of statistically independent particles, giving g(2) > 1. This is the Hanbury-Brown-
Twiss [44] effect, and is referred to as bunching, since photons appear to clump
together upon arrival.

Time evolution of photons

General methods for time evolution of quantum states are discussed in section 1.3.3.
In this thesis, time evolution is almost always due to a linear-optical circuit — a
static, discrete network of waveguides and/or bulk optical elements, which takes an
input state |ψ〉in to an output state |ψ〉out. A lossless, time-independent circuit can
always be completely described by unitary matrix Û which maps between the input
and output modes of the device, labelled ai and bj respectively.

Starting from a general pure input state in the form of (1.103), we can study
time-evolution in the Heisenberg picture, writing

|ψ〉out = Û |ψ〉in = Û

∑
i

bi

m∏
j=1

(
â†aj

)nij√
nij!

 Û †Û |0〉 =

∑
i

bi

m∏
j=1

(
Û â†aj Û

†
)nij√

nij!

 |0〉
(1.113)

where we have used the fact that Û |0〉 = eiφ|0〉 → |0〉 (optical circuits described
by unitary operators do not create or destroy photons, and the global phase is
unobservable) and Û Û † = Û †Û = 1. Now, the output-mode creation operators can
be written in terms of the input fields

â†bj = Û â†bj Û
†. (1.114)

The time-evolution of general multiphoton states can thus be computed based on
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a model of the single-particle statistics, Û . Since single-photon solutions of the
Heisenberg equation have identical solutions to the classical field, this allows us to
model general multiphoton behaviour starting from a classical understanding of the
system. The unitary Û , which completely and uniquely characterizes the circuit,
can always be represented as an m×m matrix, where in general m is much smaller
than the Hilbert space dimension of H p

m.

Note that although these calculations can be performed based on a classical
starting-point, that is not to say that all of the resulting multiphoton behaviour can
be explained by a classical model, as we will see in the next section. Furthermore,
there is strong evidence to suggest that not all states and probabilities generated by
(1.113) can be efficiently calculated on a classical computer — in many cases the
number of terms in the expansion is exponentially large in p. See sections 1.5.3 and
6.3.2 for further discussion of this point.

It will often be convenient to re-write (1.114) for the input field operators in
terms of the output fields and a unitary matrix Λ, which is analogous to the classical
transfer matrix

â†ai =
m∑
j

Λij â
†
bj

; Λ†Λ = 1. (1.115)

The beamsplitter

The beamsplitter (BS), shown schematically in figure 1.5(a), is a basic component
of optical circuits. The most common design of a bulk-optical BS consists of two
triangular prisms of BK-7 borosilicate glass, glued together with the resin of a fir
tree5 so as to form a cube with a plane interface across the main diagonal. Half-
silvered mirrors, microscope slides, and integrated optics (section 1.6), amongst
others, can all be used to construct effective beamsplitters. A light beam incident
at 45◦ to the interface is split into two orthogonal output modes, with a fraction
r = Ir/I of the input intensity reflected at 90◦ to the incident beam, and t = It/I =

1− r transmitted. The BS is thus completely characterized by the reflectivity r and
transmissivity t, also referred to as the coupling ratio η = t. A 50:50 BS is designed
to have r = t = 1

2
.

If a classical light field is injected into one of the two input modes a1, a2, the
effect of the BS is to split the complex amplitude α of the input field across the two

5The Canada balsam fir, Abies balsamea.
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output modes, conserving energy and momentum, as

αb1 = αa1
√
t+ iαa2

√
r , αb2 = iαa1

√
r + αa2

√
t , (1.116)

→ αa1 = αb1
√
t− iαb2

√
r , αa2 = −iαb1

√
r + αb2

√
t. (1.117)

Here the factor i arises on reflection, and is necessary for energy to be conserved.
The details of this kōan of experimental optics, “the photon picks up a phase on
reflection”, are not often discussed, and the effect is less obvious than it might seem.
Certainly, we could build an optical element, resembling a beamsplitter, whose effect
is characterised exactly by a Hadamard matrix — in which case it is not always the
case that the photon picks up a phase on reflection. Full analysis, given for example
in [45], is outside the scope of this thesis. The relations (1.117) lead directly to the
quantum beamsplitter transformation for ladder operators in the Heisenberg picture

â†a1
BS−−→ â†b1

√
t+ iâ†b2

√
r , â†a2

BS−−→ iâ†b1
√
r + â†b2

√
t. (1.118)

The beamsplitter has an associated unitary operator ÛBS as well as a Λ-matrix,

ΛBS(r) =

[ √
t i
√
r

i
√
r
√
t

]
(1.119)

allowing (1.118) to be re-written as[
â†a1
â†a2

]
=

[ √
t i
√
r

i
√
r
√
t

][
â†b1
â†b2

]
=

[
â†b1
√
t+ iâ†b2

√
r

iâ†b1
√
r + â†b2

√
t

]
. (1.120)

Let’s compare the behaviour of single photons incident on a 50:50 BS with that of
the coherent state. If we inject a single photon into mode a1, the system evolves as

â†a1 |0〉
BS−−→ ÛBSâ

†
a1
Û †BS|0〉 =

1√
2

(â†b1 + iâ†b2)|0〉 =
1√
2

(|1b10b2〉+ i|0b11b2〉) . (1.121)

Note that the photon is only ever detected in one or other of the output ports, never
both at the same time (〈ψ|11〉 = 0). This is the effect of photon antibunching (1.112)
which was first experimentally confirmed in 1986 by Grangier, Roger, and Aspect,
[46], constituting arguably the first strong evidence for fully particle-like behaviour
of the photon. It is interesting to note that when written in the Fock basis, (1.121)
is locally equivalent to a Bell state (1.38). See ref. [47] for further discussion of
entanglement and nonlocality of a single photon.
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Figure 1.5: (a) A bulk-optical beamsplitter is modelled as having two single-mode
input ports a1, a2 and two output ports b1, b2. If bright light is injected into input
port a1, a fraction r of the total light intensity will be reflected into output port
b2, while t = 1 − r is transmitted to b1. (b) In a Hong-Ou-Mandel interference
experiment, two indistinguishable photons are sent into ports a1, a2 of a BS. There
are four possible outcomes of the experiment: both photons can be transmitted, both
reflected, one transmitted and one reflected, and vice-versa. (c) When the photons
are perfectly indistinguishable, the first two measurement outcomes destructively
interfere and the probability of coincidental detection at b1, b2 vanishes. By tuning
the distinguishability of the photons, we can map out the Hong-Ou-Mandel dip in
the coincidence rate. Experimental data is used here only for illustration purposes,
and is shown complete with error bars and accidental coincidence count-rates in
figure 2.10.

If we instead inject a single coherent state |α〉a1 at input port a1, the output
state is

ÛBS|α〉a1 = exp

[
(αâ†b1 − α

∗âb1) + i(αâ†b2 + α∗âb2)√
2

]
|0〉 =

i√
2
|α〉b1 ⊗ |α〉b2 (1.122)

which does have nonzero |11〉 terms (〈ψ|11〉 6= 0), allowing two photons to be coin-
cidentally detected at both output ports and leading to g(2)(0) > 1 (1.111).

Although the single photon and the coherent state are distinguished by correlated
detection statistics (i.e. antibunching), in non-correlated measurements they give
essentially identical measurement outcomes. For example, the probability that a
single detector will fire at either output port of a beamsplitter is the same for both
a single- photon source and a coherent state |α = 1〉,

P (nb1 ≥ 1) = P (nb2 ≥ 1) =
1

2
. (1.123)

1.5.3 Quantum interference

To see a stronger distinction between quantum and classical behaviour of photons,
we now consider a situation in which multiple light sources are used, rather than
one. Dirac famously addressed experiments of this type, arguing that since interfer-
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ence between different sources would seem to involve the creation or destruction of
photons, violating conservation of energy, it should not occur:

Each photon then interferes only with itself. Interference between two
different photons never occurs.

P. A. M. Dirac, The Principles of Quantum Mechanics [3]

We will now show that this intuition, which is supported by our everyday experience
of the behaviour of light, does not always hold. Specifically, we will see that two
indistinguishable photons launched into different ports of a 50:50 BS interfere with
one another, precluding simultaneous detection of photons at two output ports —
an effect which has no classical analogue.

Quantum interference, as this effect is known, is thus the basic mechanism that
we will use to allow one photon to “talk” to another. It is used throughout this
thesis to implement entangling gate operations on path-encoded photonic qubits,
and is essential for linear-optical quantum computing (discussed in section 1.6.2) as
well as the “boson computer” (section 6.3.2). In section 6.3, we observe generalized
quantum interference between up to 5 photons in 21 spatial modes.

Two-photon interference

Consider the situation shown in figure 1.5(b), in which two single photons are sent
into the input ports of a 50:50 BS (a1, a2 respectively). We assume that the photons
are indistinguishable in all degrees of freedom apart from path, having the same po-
larization, wavelength etc., For classical particles, this experiment has four possible
outcomes: both particles can be transmitted, both reflected, one transmitted and
one reflected, and vice versa. Since there are no interference effects for classical par-
ticles, the detection probability at output ports (i, j) is simply given by the product
of the corresponding single-particle probabilities, P (i ∩ j) = P (ij) = P (i) · P (j),

P (2b10b2) = P (b1b1) = P (b1) · P (b1) =
1

2
· 1

2
=

1

4
; P (0b12b2) = P (b2b2) =

1

4

(1.124)

P (1b11b2) = P (b1b2 ∪ b2b1) = P (b1b2) + P (b2b1) =
1

4
+

1

4
=

1

2
. (1.125)
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For photons, the output state of the BS is given by

|1a11a2〉 = â†a1 â
†
a2
|0〉 BS−−→ 1

2

(
â†b1 + iâ†b2

)(
iâ†b1 + â†b2

)
|0〉 (1.126)

=
i

2

(
(â†b1)

2 − â†b1 â
†
b2

+ â†b2 â
†
b1

+ (â†b2)
2
)
|0〉. (1.127)

Using the canonical commutation relations (1.101) this becomes

|ψ〉out =
1

2

(
(â†b1)

2 + (â†b2)
2
)
|0〉 =

1√
2

(|2b10b2〉+ |0b12b2〉) , (1.128)

where we have ignored the global phase i (which cannot be measured). We then
have

P (2b10b2) = |〈2b10b2|ψ〉|2 =
1

2
; P (0b12b2) =

1

2
; P (1b11b2) = 0. (1.129)

Thus the probability that two photons are simultaneously detected at different out-
put ports, the probability of coincidental detection, vanishes, This is in strong con-
trast with the behaviour of classical particles (1.125), and can only be explained by
interference between the two sources. This is the famous Hong-Ou-Mandel (HOM)
interference effect, also known as two-photon quantum interference, first proposed
and experimentally demonstrated in 1987 by Hong, Ou and Mandel [48].

Note that the state (1.128) is not separable — it cannot be written as a product
state of the two systems as (1.35), and is therefore entangled. This a |NOON〉
state, which can be used to achieve quantum-enhanced precision in measurements,
as discussed in section 1.4.3.

For distinguishable photons, the situation is comparable to that of classical par-
ticles. To see this, let each mode ai now be associated with two modes (ai, a

′
i),

which are distinguishable (orthogonal) in, for instance, polarization or time. Now,
the system evolves as

|1a10a′10a21a′2〉 = â†a1 â
†
a′2
|0〉 BS−−→ i

2

(
â†b1 â

†
b′1

+ â†b1 â
†
b′2
− â†b2 â

†
b′1

+ â†b2 â
†
b′2

)
|0〉.

(1.130)

Since the two photons can in principle be distinguished by this extra degree of
freedom, the creation operators no longer commute â†b1 â

†
b′2
6= â†b2 â

†
b′1

and the output
state is then

|ψ〉out =
i

2

(
|1b11b′10b20b′2〉+ |1b10b′10b21b′2〉 − |0b11b′11b20b′2〉+ |0b10b′11b21b′2〉

)
. (1.131)
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Then, tracing over the orthogonal modes, we recover classical particle statistics
(1.125), with nonzero probability of coincidental detection at separate output ports:

P (2b10b2) = |〈1b11b′2|ψ〉|
2 =

1

4
; P (0b12b2) =

1

4
; (1.132)

P (1b11b2) = |〈1b11b′2|ψ〉|
2 + |〈1b′11b2|ψ〉|

2 =
1

2
. (1.133)

In experimental demonstrations of quantum interference, the average coincidence
count-rate c(1b11b2) = C · P (1b11b2) is very often measured as a continuous function
of the distinguishability of the photon pair, where C is the total count-rate across
all detection patterns. By controlling the arrival time (as in [48] and in this thesis)
or polarization of one photon with respect to the other, a so-called HOM dip in
coincidences can be mapped out. Figure 1.5(c) shows a HOM dip measured using
an integrated beamsplitter (section 2.2.2), in which the pair distinguishability is
tuned by delaying the arrival time of one photon with respect to the other, on
the order of the coherence time of the photon (picoseconds). When the delay is
much greater than the coherence time, the photons are fully distinguishable and
P (1b11b2) = 1/2, while for zero delay, the photons are maximally indistinguishable
and P (1b11b2) → 0. The shape of the dip depends on various properties of the
photons themselves, including their coherence time and spectral properties. An
experimental example is given in section 2.4.

In practice, various experimental imperfections including but not limited to un-
controlled polarization rotations, spectral correlation, imperfect matching of spatial
modes at the beamsplitter, and timing errors mean that real photon pairs are never
truly indistinguishable, and P (1b11b2) does not go exactly to zero. See section 2.3.1
for further discussion. The visibility of two-photon quantum interference is defined
as

V =
Cc − Cq

Cc
, (1.134)

where Cc, Cq are average coincidence count-rates c(1b11b2) for the case of distin-
guishable (classical) and indistinguishable (quantum) input pairs, respectively. The
visibility gives a useful metric of the utility of photons generated by a given source,
and will be used throughout this thesis. When the only source of experimental imper-
fection is photon pair distinguishability, the visibility can be found from the density
matrices of the two photons in a similar way to the purity (1.34), V ∝ Tr(ρ̂1ρ̂2).

For practical purposes, it would save a lot of time and money if we could repro-
duce the Hong-Ou-Mandel dip using attenuated laser pulses rather than expensive
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single-photon sources. Taking, for example, a coherent state with α =
√

0.1,

|α =
√

0.1〉 =
√

0.90|0〉+
√

0.09|1〉+
√

0.002|2〉 . . . (1.135)

any single-photon detection event is very likely to have originated from the |1〉 term.
Naïvely, a coherent state thus appears to somehow approximate the single-photon
Fock state. However, a difficulty arises in the use of many such sources — since
detection is necessarily probabilistic, we cannot synchronise effective single-photon
generation across all sources. In other words, we cannot be sure that n single-
detection events corresponded to the generation of n photons in n modes, leading
to temporal distinguishability and thus limited visibility of quantum interference.

Rarity et al. [49], showed that two classical beams |α〉a1 , |α〉a2 , incident on a BS
with randomly varying phase, will produce a dip in coincidences as a function of
temporal delay with visibility

V = 2
〈Ia1〉/〈Ia2〉

(〈Ia1〉/〈Ia2〉+ 1)2
, (1.136)

where Ia1 , Ia2 are the intensities of the two input beams. For 〈Ia1〉 = 〈Ia2〉, V = 1/2.
Hence no coherent state (indeed, no classical state of light) will produce a Hong-
Ou-Mandel dip with visibility > 1/2.

As a result, in order to see multiphoton quantum interference — which is a pre-
requisite for many photonic quantum technologies — we need alternative photon
sources, with improved synchronicity. Ideally, we would have access to a “push-
button” deterministic source of single-photon Fock states, however such devices
do not currently exist. The experimental implementation of single-photon sources
(SPS) providing a good approximation to this ultimate goal are discussed in section
1.6.3.

Calculating states and probabilities in linear optics

Throughout this thesis we will deal with circuits constructed from many linear-
optical components (beamsplitters and phase-shifters) acting on a fixed, small num-
ber of photons in as many as 21 path or polarization modes. We will now outline
a general method by which detection probabilities and output state vectors can be
calculated for arbitrary numbers of photons, both distinguishable and indistinguish-
able, in generic linear-optical networks. Here we largely follow the detailed analysis
of Stefan Scheel [50].

Recall that any pure superposition state can be written in the many-mode Fock
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basis (1.103). The input and output states for a p-photon, m-mode experiment

|ψ〉in =
d∑
i=1

gi|na1, na2 . . . nam〉i ; |ψ〉out =
d∑
i=1

hi|nb1, nb2 . . . nbm〉i (1.137)

are completely characterized by the complex probability amplitudes gi, hi, respec-
tively. As before, modes a and b label the input and output ports of the circuit,
although our notation has changed slightly. The states |na1, na2 . . . nam〉i correspond
to the ith unique permutation of n photons in m modes, and together form a basis
for the Hilbert space H p

m.

In Fock notation, we count the number of photons in each mode. Equivalently,
for each photon j we can write the index zj of the mode it occupies: For example,
for two photons in three modes:

|n1 = 2, n2 = 0, n3 = 0〉 = |z1 = 1, z2 = 1〉

|n1 = 1, n2 = 1, n3 = 0〉 = |z1 = 1, z2 = 2〉

. . .

|n1 = 0, n2 = 0, n3 = 2〉 = |z1 = 3, z2 = 3〉.

Note that the second representation can be significantly more efficient for small
numbers of photons in large circuits.

Let’s consider the evolution of Fock states in an arbitrary two-mode circuit de-
scribed by the matrix

Λ =

[
s11 s12

s21 s22

]
. (1.138)

A single photon injected into input port a1 evolves as

Λ â†a1|0〉 =
(
s11â

†
b1

+ s12â
†
b2

)
|0〉 = s11|1b10b2〉+ s12|0b11b2〉. (1.139)

Since no photons are injected into mode a2, the second row of Λ has no effect, and
the output probability amplitudes are simply h1 = s11, h2 = s12. When two photons
injected into modes a1 and a2 respectively, both columns and rows of the matrix are
significant:

Λâ†a1 â
†
a2
|0〉 =

1√
2
s11s21|2b10b2〉+

1√
2
s12s22|0b12b2〉+ (s11s22 + s12s21)|1b21b2〉. (1.140)

For s11 = s22 =
√
t, s12 = s21 = i

√
r we obtain the two-photon output state of a
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general beamsplitter, and for r = 1
2
we recover the HOM dip (1.128). For the input

state |1112〉, the output probability amplitudes hi therefore depend on Λ as

h1 =
1√
2
s11s21 ; h2 = s11s22 + s12s21 ; h3 =

1√
2
s12s22.

We can re-write these relations as

h1 =
1

2
√

2
per

[
s11 s11

s21 s21

]
; h2 = per

[
s11 s12

s21 s22

]
; h1 =

1

2
√

2
per

[
s12 s12

s22 s22

]
,

(1.141)
where per(M) is the permanent of a matrix. The permanent of an n × n matrix
M is defined in much the same way as the determinant det(M), but without the
alternating sign:

det(M) =
∑
σ∈Sn

sgn(σi)
n∏
i=1

Miσi ; per(M) =
∑
σ∈Sn

n∏
i=1

Miσi , (1.142)

where σi is a single permutation in the group Sn of all possible permutations of M .

The advantage of representing hi in the form of (1.141) is this: Consider an
arbitrarym-mode linear-optical circuit described bym×mmatrices Û and Λ. When
a given Fock state |na1na2 . . . nam〉 is sent into the circuit, the probability amplitude
hi corresponding to detection of the state |nb1nb2 . . . nbm〉i at the output is in general
given by

hi = 〈nb1nb2 . . . nbm|iÛ |na1na2 . . . nam〉 =

(
m∏
j=1

naj !

)− 1
2
(

m∏
k=1

nbk!

)− 1
2

per
(
Λ[za|zb]

)
,

(1.143)
where the expression Λ[za|zb] constructs a new matrix from the columns and rows
of Λ, corresponding to the chosen input (za) and output (zb) ports respectively [50].
To see how this works, consider again the example of p = 2, m = 3. If photons are
injected at ports a1 and a2, the probability amplitude corresponding to coincidental
detection at output ports b2 and b3 is proportional to the permanent of a matrix
constructed from rows (1, 2) and columns (2, 3) of Λ:

Λ =


s11 s12 s13

s21 s22 s23

s31 s32 s33

→ Λ[za|zb] =

[
s12 s13

s22 s23

]
; hi = per

[
s12 s13

s22 s23

]
(1.144)

Note that when more than one photon occupies the same mode in the input or
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output state, rows and columns of Λ will be repeated in Λ[za|zb].

Equation (1.143) computes the probability amplitude for detection of one Fock
state given another as input to the circuit. For an arbitrary superposition of input
states (1.137), each output probability amplitude is simply given by a linear sum
over the Hilbert space

hi = 〈nb1nb2 . . . nbm|Û |ψin〉 =
d∑
j

〈na1na2 . . . nam|iÛ |na1na2 . . . nam〉j. (1.145)

Probabilities, corresponding to experimentally detected count rates, can then be
computed by the Born rule,

PQ([nb1n
b
2 . . . n

b
m]i) = |hi|2. (1.146)

By taking the absolute-square before calculating the permanent, we destroy inter-
ference between different terms in Λ and hence obtain detection probabilities corre-
sponding to distinguishable photons — classical statistics:

PC([nb1n
b
2 . . . n

b
m]i) =

(
m∏
k=1

nbk!

)−1

per
(
|Λ[za|zb]|2

)
. (1.147)

Note that the normalization constant is modified, since these are now distinguishable
particles.

This method provides a very convenient route to the calculation of state vectors
and detection probabilities in linear optics for arbitrary interferometers, and is used
throughout this thesis. Since the technique is based almost entirely around the
calculation of permanents, we can make use of the best known generic classical
algorithms for per(M), rather than having to tailor our numerical methods to the
physics in question.

The relationship between bosonic statistics and the permanent was first noted by
Caianiello [51], and was mentioned in Valiant’s 1979 proof [52] that the permanent
is in general exponentially hard to compute. As such this method does not scale,
and we are currently limited to problem sizes of approximately 7 photons in ∼ 50
modes. The computational complexity of the permanent and associated linear optics
experiments are discussed in depth in section 6.3.2 of this thesis.
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1.5.4 Interferometers

Throughout this thesis we will make use of path and polarization interferometers
to manipulate and interfere quantum states of light. It will be useful to briefly
examine the components and behaviour of two specific examples: the Mach-Zehnder
interferometer (MZI) and the Reck-Zeilinger scheme. In chapters 2—5 we use MZIs
to encode and manipulate qubits in a small-scale circuit model quantum processor,
and the Reck-Zeilinger scheme is used in section 6.3.2 to implement m ×m Haar-
random unitary matrices.

The Mach-Zehnder interferometer

A typical bulk-optical MZI is shown in figure 1.6. The MZI has two input ports
corresponding to (a1, a2) of a 50:50 beamsplitter, which splits a beam injected into
either port into two paths. A relative phase-shift ϕ, equivalent to a path-length
difference dz = ϕλ/2π, is introduced into one arm. The two paths are then mixed
at a second 50:50 BS, the output ports of which are monitored by single-photon
detectors or photodiodes, D0 and D1. A phase shift acting, for example, on arm
b2 of the interferometer transforms â†b2 → eiϕâ†b2 and can be written as a unitary
matrix

ÛPH(ϕ) =

[
1 0

0 eiϕ

]
= e−iϕ/2

[
eiϕ/2 0

0 e−iϕ/2

]
→

[
eiϕ/2 0

0 e−iϕ/2

]
, (1.148)

where we have chosen to ignore the global phase −ϕ/2 as it cannot be measured in
the two-mode system considered here. We can then write the matrix corresponding
to the entire MZI,

ÛMZI(ϕ) = ÛBS2ÛPH(ϕ)ÛBS1 (1.149)

=
1√
2

[
1 i

i 1

][
eiϕ/2 0

0 e−iϕ/2

]
1√
2

[
1 i

i 1

]
= i

[
sin(ϕ/2) cos(ϕ/2)

cos(ϕ/2) − sin(ϕ/2)

]
,

(1.150)

where the global phase i can again be neglected. If light is injected into port a1 of
the MZI, the intensity at (D1, D2) therefore depends on the phase ϕ as

ID1 = I0 sin2(ϕ/2) ; ID2 = I1 cos2(ϕ/2). (1.151)

These are the interference fringes as shown in figure 1.6(b).



1. Introduction and Essential Physics 49

Note that ÛMZI strongly resembles a variable-reflectivity beamsplitter (1.119)
ÛBS(r). In fact, by applying phase shifts before and after the MZI the circuit can
be made identical to a beamsplitter with arbitrary reflectivity r:

ÛBS =

[√
t i
√
r

i
√
r
√
t

]
=

[
sin(ϕ/2) i cos(ϕ/2)

i cos(ϕ/2) sin(ϕ/2)

]
= −i

[
1 0

0 i

]
ÛMZI(ϕ)

[
1 0

0 i

]
,

(1.152)
where ϕ = 2 cos−1(

√
r). The MZI structure therefore allows us to convert a passive

device with fixed beamsplitter reflectivities into a reconfigurable device by adding
controlled phase-shifts. Experimentally it is often considerably easier to dynamically
control a phase shift than a beamsplitter reflectivity, and this technique is used
extensively throughout this thesis.

We can further extend this result to show that an MZI with external phase shifts
can implement any unitary operator in the group SU(2), i.e. any lossless two-mode
operation. To see this, note that ÛMZI with external phaseshifts (1.152) is identical
to rotation by an angle θ = ϕ+π about the x-axis of the Bloch sphere (figure 1.2),

R̂x(θ) = eiθσ̂x/2 = −i

[
1 0

0 i

]
ÛMZI(ϕ)

[
1 0

0 i

]
, (1.153)

and that a phase shifter (1.148) corresponds to a rotation about the z-axis, ÛPH(ϕ) =

R̂z(ϕ) = eiϕσz/2. A simple geometric argument leads to the observation that these
two rotations are sufficient to take any point on the Bloch sphere to any other point,
including a global phase — that is, to map any pure state to any other pure state of
a two-level system. Any unitary operator in SU(2) can therefore be realised using
an MZI with phaseshifters at the input and output:

Û = R̂zγR̂xβR̂zα = eiγσ̂zeiβσ̂xeiασ̂z = ÛPH(γ′)ÛMZI(β
′)ÛPH(α′), (1.154)

where α, β, γ are real numbers — the Euler angles [53]. A single photon in an MZI
thus provides a convenient encoding for the two level system of a qubit — this is
discussed in further detail in section 1.6.1.

Note that the interferometer is sensitive to phase shifts on the order of the wave-
length dz ∼ λ. This sensitivity allows the MZI to be used for extremely precise
interferometric measurements of distance, refractive index, and other optical prop-
erties of interest. However, this sensitivity is a double-edged sword — in order to
construct a stable MZI we must ensure that the relative positions of the beamsplit-



50

(a) (b)

Figure 1.6: The Mach-Zehnder interferometer. (a) A light beam is divided into
two paths by a beamsplitter, and one path is phase-shifted with respect to the other
by by a relative phase ϕ. The two beams are then mixed on a second beamsplitter,
giving rise to (b) interference fringes in the measured intensity at detectors D1, D2.

ters and mirrors are static to within a small fraction of the optical wavelength, i.e. ∼
nm. In a bulk optical setup, this is extremely difficult to achieve due to thermal ex-
pansion/contraction and acoustic vibration of the apparatus. Although intrinsically
stable bulk optical interferometers can be built, for instance using beam displacers
[54] or a Sagnac architecture [55], these schemes introduce further complexity and
are not scalable. As a result, many experiments in quantum optics use polarization
encoding in free-space, which is intrinsically stable — as only a single spatial mode
is used.

With the recent advent of integrated quantum photonics (IQP) it has become
possible to build complex, multi-mode interferometers on-chip. By embedding the
interferometer in a monolithic substrate, stable path-interferometry can be scaled to
devices with thousands of optical modes, while simultaneously being miniaturized
by a factor of a million [56] with respect to equivalent bulk-optical apparatus. Path-
encoding then becomes a very natural choice, particularly since on-chip polarization-
encoding is currently problematic. This topic is discussed in detail in section 1.6.5.

Linear-optical implementation of any unitary operator

As we have already seen, an MZI surrounded by two phase-shifters can implement
an arbitrary unitary operation on two modes (Û ∈ SU(2)). How does this generalize
to circuits with more than two modes? What is the class of operations that we can
implement on m modes, using only linear-optical elements?

As shown by Reck and Zeilinger [57], any m×m unitary operator Û corresponds
to a linear-optical circuit on m modes, constructed from beamsplitters and phase-
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Mirror

m

m-1

1
2

m-2

1

m-1

(a) (b) (c)

(d)
m

Figure 1.7: Any unitary operator Û on m optical modes can be implemented
using 2 × 2 optical elements — beamsplitters and phase-shifters. (a) Original fig-
ure, reproduced from [57]. Blue lines represent phase-shifters, short black lines are
beamsplitters with arbitrary reflectivity. (b) Stabilization of the interferometer in
(a) would be practically very challenging in a bulk-optical architecture. The same
circuit can instead be implemented using integrated photonics (section 1.6), pro-
viding interferometric stability and miniaturization. This circuit is implemented,
without phase-shifters, in section 6.3.2 of this thesis. (c) Beamsplitters drawn in
(a), (b) must have variable reflectivity. In an integrated circuit, we replace each
variable beamsplitter by an MZI, allowing the effective reflectivity of each splitter
to be controlled by a phase-shifter, leading to the circuit shown in (d).

shifters only. That is, any Û has a decomposition as a product

Û = ÛT · ÛT−1 . . . Û1, (1.155)

where each ÛT acts nontrivially on at most two modes and does not affect the
remaining m-2 modes. A simple proof has been given by Aaronson and Arkhipov
[58]. We have already seen that each two-mode ÛT can always be implemented using
an MZI with a total of three phase shifters. Given a target unitary Û , the task is
then to perform the decomposition (1.155). In fact, this decomposition is equivalent
to a standard technique for QR decomposition6 of a matrix using Givens rotations
— 2×2 matrices corresponding to ÛT . The circuit for Û in terms of optical elements
ÛT can thus be found for any discrete Û .

In their paper, Reck and Zeilinger go on to show how this decomposition can be
implemented using a single linear optical network, which is reconfigured by means
of phase shifters and variable beamsplitters to implement any Û . In general, the
circuit usesO(m2) elements. In this design, the network is local in the sense that each
ÛT acts on pairs of adjacent waveguides, considerably simplifying the experimental
implementation. The general form of the circuit is shown in figure 1.7(a). The design

6This implies that numerical methods identical to the Reck-Zeilinger decomposition are provided
in almost any numerical linear-algebra package capable of QR decomposition (e.g. LAPACK). Your
home router probably knowns how to build Reck schemes.
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lends itself to an implementation in using integrated optics, where interferometric
stability is simple to achieve. Equivalent waveguide circuits are shown in figures
1.7(b, d).

Although the scheme is perhaps more easily visualized in path, it should be em-
phasised that the modes m can in principle correspond to any degree of freedom
of the photon, so long as the corresponding beamsplitter and phase-shifter opera-
tions can be constructed. A recent example [59] uses a combination of path and
polarization modes in a bulk-optical setup.

If we can use Reck-Zeilinger to implement any unitary matrix, does that mean
that we can build a universal gate-set for a quantum computer using only beam-
splitters and phase-shifters? To answer this question, it should be emphasised that
Reck-Zeilinger allows us implement an arbitrary unitary on modes, whereas ÛCNOT

acts on qubits. Using a Reck scheme we can implement any m×m matrix dictating
the dynamics of a single photon in an m-mode circuit, i.e. acting on the single-
photon Hilbert space H 1

m. Following the method outlined in section 1.5.3, this then
generates the d × d matrix U acting on the full Hilbert space of p photons in m

modes, H p
m, which is in general exponentially larger (d =

(
m+1−p

p

)
). Since this is

the space onto which our qubits are mapped, by a simple parameter-counting argu-
ment we cannot always use Reck-Zeilinger to deterministically implement arbitrary
unitary operations on photonic qubits. In principle, we could map n qubits to the
state of a single photon in 2n modes, in which case Û = U and Reck-Zeilinger can
be used to implement universal quantum computing — but the necessary experi-
mental resources clearly scale exponentially in n. The latter scheme, which cannot
provide an exponential speedup over classical machines, has recently been suggested
for superconducting qubits [60].

1.5.5 Nonlinear optics

The majority of optical effects observed in nature are linear, in the sense that the
properties of the material or medium are independent of the incident light field.
Under these conditions, the wavelength of light is not changed when passing through
the medium, and a light source will never have control over the behaviour of another.
In linear media, the dielectric perimittivity ε is a constant function of the dielectric
susceptibility of the material χe (1.60), and does not depend on the electric field

ε(E) = ε0 [1 + χe] . (1.156)
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However, with the advent of light sources such as the laser, it has become pos-
sible to engineer situations in which the passage of an intense light beam through
an optical medium temporarily modifies the properties of the material itself to a
significant extent. This can generate new optical fields or cause self-modulation of
the incident beam, allowing “light to control light” where that control is mediated
by the optical material.

The effect of a strong optical field incident on a nonlinear medium can be de-
scribed in terms of the dielectric polarization vector P, which is introduced into the
expression for the electric flux density D in Gauss’ law (1.59) as

D(E) = εE = ε0 [1 + χe] E → D (E) = ε0E + P (E) (1.157)

where
P (E) = ε0(χ(1)

e E + χ(2)
e E2 + χ(3)

e E3 + . . .) (1.158)

Here χe ≡ χ
(1)
e is the standard (linear) dielectric susceptibility, while χ(2)

e etc. char-
acterise the higher-order nonlinear response of the material. In most nonlinear media
the magnitude of these terms decreases rapidly with order, i.e.

χ(1)
e � χ(2)

e � χ(3)
e . . . (1.159)

and in order for χ(2)
e to be nonzero, the material must be birefringent.

This nonlinear response allows nonlinear materials to mediate an effective inter-
action between photon pairs. However, since χ(1)

e � χ
(2)
e , any such effect is typically

very weak. As a result it is technically very difficult to use such media to entangle
two photons initially prepared in a separable state, for example. This difficulty,
together with a potential solution to effective photon interaction which does not di-
rectly depend on intrinsic optical nonlinearity, is discussed further in section 1.6.2.

1.6 Quantum photonics

In order to implement any of the quantum technologies described in section 1.4, we
must first choose a physical system in which to encode quantum information. As
already discussed, this system should support the preparation, controlled coherent
manipulation, and readout of single quanta. This leads to a challenging set of
near-incompatible requirements: In order to avoid decoherence and the unwanted
introduction of mixture, the system must be carefully protected from interaction
with the environment, while, at the same time — in order to achieve the entangling
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operations required for most quantum technologies — amenable to strong, controlled
pairwise interaction. Moreover, the experimentalist should have access to a number
of control parameters with direct influence on the system’s state.

Over the past few decades, a range of physical systems have emerged as leading
solutions to this problem. Cold atoms [61] and charged ions [62], held in a vari-
ety of electromagnetic traps, satisfy many of the desired criteria, in particular the
availability of strong pairwise interaction. Superconducting qubits [63], based on
Josephson junctions, as well as nitrogen vacancy (NV) centers in diamond [64] and
phosphorous impurities in silicon [65], are more immediately amenable to monolithic
integration, and have recently seen considerable industrial interest [66]. However,
ions, atoms, and spins all readily interact with both light and matter and the ma-
jor limiting factor of many of these matter-based platforms is environment-induced
decoherence. Much of the experimental challenge therefore involves the careful iso-
lation of the system of interest from environmental effects, often requiring ultrahigh
vacuum and/or cryogenic temperatures.

These difficulties lend favour to the prospect of an all-optical photonic quantum
computer, where qubits are encoded in the quantum state of single photons. In gen-
eral, photons interact only very weakly with their environment, and single photons
propagating in free space or optical fibre at room temperature and pressure (RTP)
suffer negligible decoherence. Over the past half-century, single photon sources (sec-
tion 1.6.3), and high-efficiency single photon detectors (section 1.6.4) have become
widely available. Deterministic single-qubit operations are very easily implemented
using passive linear optics, as described in section (1.5.4). Many classical imaging
and measurement techniques are optical, and photons are a natural choice for many
applications of quantum metrology. Owing to their speed, photons are also natural
candidates when quantum information must be moved over an appreciable distance,
either between registers in a quantum computer, or over long-distance communica-
tion channels [67].

High-fidelity quantum states of single photons are now routinely generated, ma-
nipulated and measured at RTP, and many early demonstrations of quantum effects,
including superposition [68], nonlocality [15], large-scale entanglement [69], two-
qubit gates [55], QKD [70], quantum metrology [71], quantum algorithms [72–74],
ECCs [75], etc. have used single photons at near-visible wavelengths.
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1.6.1 Photons as qubits

A single photon is associated with a number of continuous variables, including po-
sition and frequency, and in general occupies an infinite-dimensional Hilbert space.
In order to encode a photonic qubit, we must therefore restrict the dynamics to an
effective two-level system. In principle this can be achieved using a single cavity
mode, mapping logical qubit states |0〉 and |1〉 to the vacuum and single-photon
Fock state respectively. However, this simple encoding has obvious drawbacks: for
instance, rotation of a single qubit from |0〉 to |1〉 becomes experimentally challeng-
ing, requiring a photon source.

Instead, it is experimentally much more convenient to use two modes and one
photon per qubit. Modes in frequency, time, and orbital angular momentum [76]
are routinely used to encode quantum information, however, in this thesis we will
only consider path encoding and polarization encoding.

Path encoding

Path encoding, otherwise known as dual-rail encoding, stores a qubit as a propa-
gating photon in a superposition of two optical spatial modes a0 and a1. The two
logical-basis states of the qubit, |0〉 and |1〉, correspond to states of the photon
occupying each spatial mode respectively. Mapping from qubits to the Fock-state
representation,

α|0〉+ β|1〉 ≡ α|1a00a1〉+ β|0a01a1〉. (1.160)

As described in section 1.5.4, deterministic, arbitrary unitary operations on two
spatial modes are easily accomplished using an MZI. Any path-encoded state can
thus be mapped to another using beamsplitters and phaseshifters. Techniques for
state preparation and measurement of path-encoded qubits are shown in section
2.2.5 and 2.2.6.

Path encoding has the advantage of easily scaling to higher-dimensional qudit
encodings, where a d-level system is encoded using a single photon together with
d spatial modes. The result of Reck-Zeilinger (section 1.5.4) allows arbitrary de-
terministic rotations of path-encoded qudits using beamsplitters and phaseshifters
only. This possibility is discussed further in section 6.3.

As long as we can engineer single-mode optics, path-encoding is relatively easy
to implement. However, when realised using bulk optics, thermal instability and
mechanical vibration of the experimental setup will give rise to uncontrolled time-
varying phase shifts in the interferometer. This has the effect of adding mixture
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to the state, and is largely indistinguishable from decoherence. Although active
stabilization or Sagnac architectures can be used to overcome this difficulty, these
techniques are expensive and complicated and, for bulk optical setups, path-encoding
has largely been avoided in favour of polarization-encoded qubits.

More recently, IQP (1.6.5), which provides inherent interferometric stability, has
enabled path-encoding on a large scale.

Polarization encoding

Path-encoding suffers from the difficulty of nm path-length matching, and as such
is very challenging to implement in bulk-optics, or when communicating over long
distances. Polarization encoding, in which the logical basis states of the qubit are
mapped to the horizontal |H〉 and vertical |V 〉 polarization states of the photon,
overcomes these problems. Since both polarizations propagate in the same spatial
mode, there is no difficulty of path-length matching. Deterministic arbitrary single-
qubit rotations on polarization-encoded qubits can easily be accomplished using a
system of birefringent quarter-wave and half-wave plates, following a decomposition
of Û which is analogous to that of the MZI. Polarization-encoding has the further
advantage that polarization-entangled states are naturally generated by spontaneous
parametric downconversion (SPDC), as described in section 1.6.3.

Polarization encoding is not amenable to qudit encodings. Moreover, the ability
to faithfully transport and manipulate polarization-encoded states in optical waveg-
uides is not currently well-developed, as described in section 2.2.1.

In general, we can deterministically convert between path and polarization en-
codings using a polarising beamsplitter (PBS), which transits and reflects horizon-
tally and vertically polarized light, respectively. Using a similar notation to figure
1.5,

ÛPBS = |Ha1〉〈Hb1|+ |Ha2〉〈Hb2|+ i|Va1〉〈Vb2|+ i|Va2〉〈Vb1|. (1.161)

1.6.2 Linear-optical quantum computing

In section 1.6, we argued that photonics offers an advantage over many other ap-
proaches to the implementation of quantum technologies, owing to the inherent
reluctance of photons to interact with their environment. However, this comes at
a cost, in that photons are also very reluctant to interact with one another. This
presents a serious challenge to the implementation of entangling operations required
by many quantum technologies. Direct photon-photon interaction is so weak as to
never be seen outside a particle accelerator. Although nonlinear Kerr media (section
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1.5.5) can be used to mediate an effective interaction between photons, this effect is
many orders of magnitude too weak (χ(3) ≈ 1× 10−22 m2 V−2) to be feasible. Ex-
tremely strong optical non-linearities can be obtained when photons interact with
a solid-state atom-like system, such as a charged ion or a quantum dot, however,
the current performance of these technologies, particularly with respect to loss and
coupling strength, is far from sufficient for quantum computation [77, 78].

As a result, it may then appear that photonic quantum computing is forbidden by
strong technological constraints. In 2001, Knill, Laflamme and Milburn (KLM) set
out to formalize this reasoning, in order to show that without a strongly nonlinear
optical medium or component, scalable photonic quantum computing should be
impossible. To the surprise of many, they found [79] the converse: that full-scale,
universal quantum computation can be scalably achieved using only single-photon
sources, single photon detectors, and a linear-optical network, together with adaptive
measurement, a.k.a. feed-forward.

At the heart of the Knill, Laflamme and Milburn (KLM) quantum computer
is HOM interference, as described in section 1.5.3. As has already been discussed,
indistinguishable bosons in linear-optical circuits exhibit highly non-classical inter-
ference effects, and generate correlations which cannot be classically reproduced.
However, as was shown by Kok and Braunstein [80], these phenomena cannot be
used to implement deterministic entangling gates on photonic qubits. For example,
the 2-photon NOON state (1.128) generated by a BS is entangled, but it is not
obvious how to convert this state to a Bell state (1.38) using linear optics alone.
The first insight of KLM was to show that quantum interference of Fock states in a
simple linear-optical network could probabilistically implement a maximally entan-
gling operation on two qubits. A construction and experimental implementation of
a two-qubit gate derived from the original proposal of KLM is given in section 2.2.4.

A fundamentally probabilistic gate is problematic for scalable quantum compu-
tation, as the success probability of composite circuits built from such gates will
in general fall off exponentially with circuit size. The second, extremely significant
result of KLM was to show that such probabilistic gates can be bootstrapped into a
scalable architecture, using ancillary photons together with measurement and feed-
forward. Sending extra photons into the circuit, which are not used to encode logical
qubits, detection events registered at the output can then be used to obtain classi-
cal information on the success or failure of the gate. This information is then used
to reconfigure the circuit downstream of the gate, essentially correcting for failure.
KLM showed that this feed-forward technique can be used to render linear-optical
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entangling gates asymptotically deterministic, with only a polynomial resource over-
head. Specifically, KLM give a linear-optical construction for a maximally entangling
controlled-Z (CZ) gate with success probability scaling as p2/(p+1)2 in the number
of ancilla photons p.

By removing the need for strong natural optical non-linearities, the result of
KLM significantly reduces the experimental difficulty of photonic quantum com-
putation, and as a result has attracted considerable experimental interest [81, 82].
However, the resource overhead necessary for scalable operation, while polynomial,
is prohibitively large for real-world implementations. Fortunately, a number of re-
cent proposals [83, 84] have significantly improved on the original result. Using a
one-way model of quantum computation based on the generation and measurement
of cluster states, these schemes dramatically reduce the resource overhead required
for scalability, to the extent that realization of linear-optical quantum computation
is now arguably more of an engineering challenge than an open theoretical question.
A number of experimental implementations have since been reported [85–87].

1.6.3 Sources

We have already seen that the coherent state generated by a laser (section 1.5.2)
is not appropriate for experiments which depend on multiphoton quantum interfer-
ence. Most photonic quantum technologies depend on light sources which do not
admit a classical description. Arguably the most technically demanding is the on-
demand single-photon source. This would be a device which deterministically gen-
erates indistinguishable single-photon Fock states |0〉 in a single mode, on demand.
Currently, no such device exists, and the development of scalable SPSs remains a
very significant challenge for the realization of quantum technologies. A scalable
on-demand SPS would have immediate applications for QKD [88], and metrology
[38], and would represent a very significant step towards tangible quantum speedup
in information processing tasks (section 6.3.2).

Leading candidates for deterministic single-photon sources include artificial-atom
systems [89] such as NV centres in diamond, quantum dots, and various atomic
systems. There is no fundamental limit to the probability of success of such SPSs.
However, these techniques currently do not achieve sufficient performance — in
particular, with respect to out-coupling efficiency and photon indistinguishability —
to be immediately applicable to the demanding multiphoton experiments described
in this thesis.

Historically, a great many proof-of-principle demonstrations of quantum infor-
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Figure 1.8: (a) Type-I SPDC cone structure. Downconverted photon pairs are
generated at diametrically oppposed points about the pump axis, on a cone with
a typical opening angle of ∼ 3◦. (b) Type-II cones. Entangled photon pairs lie at
the intersection of the two cones (green spheres). (c) Conservation of energy. (d)
Conservation of momentum: the phase-matching condition.

mation tasks have been accomplished using non-deterministic SPSs based on para-
metric nonlinear optical processes. We will focus our discussion on these sources,
which are used throughout the experiments described in this thesis.

Non-deterministic, spontaneous photon sources do not directly provide a route to
scalable quantum technologies, as the probability of generating p indistinguishable
photons falls off exponentially with p. However, it has recently been suggested
[90, 91] that by multiplexing many nondeterministic sources in parallel, together
with single-photon detection and a fast switching network, it should be possible
to construct an asymptotically deterministic on-demand source with polynomial
resource overhead. This provides an alternative route to a scalable single-photon
source, which is particularly amenable to monolithic integration (section 1.6.5).

Spontaneous parametric down-conversion

Nonlinear optics (section 1.5.5), when combined with single photon detection (sec-
tion 1.6.4), provides a convenient and historically very successful route to approxi-
mate, non-deterministic single-photon sources.

The result of the χ(2) nonlinearity introduced in (1.158) is to allow so-called 3-
wave mixing effects. These include sum-frequency generation in which two pump
beams with frequencies (ω1, ω2) generate a new optical field with ω1 ± ω2, and
spontaneous parametric downconversion (SPDC), in which a single pump beam ω0

generates two daughter fields with frequencies ω1 and ω2. SPDC allows a light
beam to be arbitrarily down-converted to a longer wavelength, and as such has
many classical applications. In this thesis we are principally concerned with SPDC
as a source of quantum states of light — single photons.

In the quantum picture of SPDC, a high-energy pump photon in a single mode
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with wavevector k0 is incident on a nonlinear birefringent crystal with a χ(2) nonlin-
earity. The pump photon splits into two daughter photons in modes k1, k2, referred
to as the signal and idler for historical reasons. This process must of course preserve
conservation of energy and momentum, having

ω1 + ω2 = ω0 ; k1 + k2 = k0. (1.162)

Throughout this thesis we will optimize our sources to generate indistinguishable
photon pairs with ω1 = ω2.

Adding the interaction terms generated by (1.158) to the quantized Hamiltonian
of the free electromagnetic field (1.97) and summing over all modes, we can write
the SPDC Hamiltonian [92]

Ĥ =
2∑
i=0

~ωi
(
n̂i +

1

2

)
+ ~g

[
â†1â

†
2â0 + h.c.

]
, (1.163)

where â†1, â
†
2 are creation operators for photons in the signal and idler modes respec-

tively, â0 corresponds to annihilation of the pump photon, and g ∝ χ(2) is a coupling
constant which ensures that the conditions of (1.162) are met.

Usually the applied pump is an intense laser beam, modelled by the coherent state
|α〉 with 〈n̂1(t)〉, 〈n̂2(t)〉 � |α|2. Since the pump field is then effectively classical, we
can re-write the interacting part of Ĥ as

ĤI = iξ~
(
â†1â

†
2 + h. c.

)
, (1.164)

where the classical properties of the pump, including the fast modulation e−iω0t,
have been lumped together with g into ξ. Assuming that the signal and idler modes
are initially prepared in the vacuum state |0102〉, time evolution of the system is
then governed by the unitary operator Û = e−iĤI t/~, leading to an output state

|ΨSPDC〉 = Û |0102〉 (1.165)

≈ eξ~tâ
†
1â
†
2|0102〉 (1.166)

=
∞∑
j=0

γj

j!

(
â†1

)j (
â†2

)j
|0102〉 =

∞∑
j=0

γj|j1j2〉 (1.167)

= |0102〉+ γ|1112〉+ γ2|2122〉+ γ3|3132〉 . . . (1.168)

where γ = tξ and we have assumed that |γ| � 1.
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The importance of the SPDC state (1.168) for applications in quantum photonics
is this: when γ is small such that γ � γ2 � γ3 . . ., the state |ΨSPDC〉 is well-
approximated by a superposition of the vacuum and a two-photon state |1112〉:

|ΨSPDC〉 ≈ |0〉+ γ|1112〉. (1.169)

A single-photon detection event in the idler arm therefore heralds a single-photon
Fock state in the signal arm with high probability, and vice-versa. Moreover, by
using two detectors and counting in the coincidence basis (i.e. only registering
events in which both signal and idler detectors clicked) we post-select on the |1112〉
term, allowing |ΨSPDC〉 to be used as an approximate source of indistinguishable
photon pairs.

Most experiments in quantum optics are performed using non-number resolving
(“bucket”) detectors, which cannot distinguish between Fock states |n〉. If a coinci-
dence click is registered across the signal and idler modes, there is a small probability
|γ|4 that this event came from the |2122〉 term in (1.168), leading to partial mix-
ture of the effective experimental state. Increased pump power, while increasing the
overall downconversion rate, leads to a greater value of γ and an increased relative
probability of detection events due to higher-order terms. If the desired state is
|1112〉, as is the case throughout this thesis, this effect degrades the quality of the
measured state.

The allowed signal and idler modes are those which meet the conditions energy
conservation and phase-matching (1.162). This depends on the experimental geom-
etry, the nonlinear material, the pump, signal and idler wavelengths, and a variety
of other experimental parameters. In type-I phase-matching, photon pairs with iden-
tical polarization are generated at diametrically opposed points on a cone centred
about the pump axis (figure 1.8(a)). The opening angle of the cone depends on the
pump wavelength and the properties of nonlinear material — in particular, the ori-
entation of the crystal lattice with respect to the pump beam. Photons generated by
tyoe-I SPDC are entangled in wavelength, time, and space, but not in polarization,
and we therefore collect the state |V1V2〉. In type-II phase-matching, photons are
generated in two overlapping cones with orthogonal polarization [93] as illustrated
in figure 1.8(b). At the points where the cones overlap, since we cannot distinguish
one photon from another nor from which cone either photon was collected, the state



62

is entangled in polarization across four modes (paths 1, 2 and polarizations H, V ),

|ΨSPDC-II〉 ∝
∞∑
n=0

γn

[
n∑

m=0

(−1)m|n−mH1,mV 1,mH2, n−mV 2〉

]
(1.170)

= |0〉+ γ|1H1, 0V 1, 0H2, 1V 2〉 − γ|0H1, 1V 1, 1H2, 0V 2〉+ h.f. (1.171)

After post-selection on detection of one photon in each spatial mode and re-normalization
this is equivalent to

|Ψ−〉 =
1√
2

(|H1V2〉 − |V1H2〉) , (1.172)

which is a maximally entangled Bell state (section 1.3.7).

Most of the experimental work in this thesis makes use of type-I SPDC to gener-
ate indistinguishable photon pairs, both in the CW and pulsed regimes. The excep-
tion is section 4.5, in which type-II SPDC is used to generate polarization-entangled
states in the form of (1.172).

1.6.4 Detectors

In order to read-out quantum information from a photonic system, we must almost
always use single-photon detectors. Classical detectors, sensitive only to macroscopic
light intensity, are usually not sufficient to obtain a quantum advantage. When a
single photon, (typically with energy ~ω ≈ 10× 10−21 J) is incident on the active
area of a single-photon detector, we would like to raise a macroscopic, classically ac-
cessible flag or signal. Ideally, this process would be deterministic and fast, allowing
detection events to be correlated in time. Such an idealised single-photon detector,
acting on a mode k, is described in the Fock basis by the projector Πd = |1k〉〈1k|,
with

Tr (Πd|0〉〈0|) = 0 ; Tr (Πd|1〉〈1|) = 1. (1.173)

All practical single-photon detectors face the difficulty of amplifying the small change
in energy imparted by a single photon to the macroscopic level. As a result, real-
world single-photon detectors suffer from a number of imperfections, the most sig-
nificant of which is limited detection (quantum) efficiency. Strong amplification
also leads to electrical noise, which manifests as so-called dark counts — signals
which positively indicate single-photon detection, when no photon was incident on
the detector. Moreover, all electronic signals suffer from timing uncertainty or jitter,
limiting the timing resolution of the device. The amplification process is often based
on an avalanche or breakdown from an initial fragile state, leading to a finite dead-
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time, during which the detector is unresponsive. Finally, the majority of existing
single-photon detectors generate the same output signal for all Fock states other
than the vacuum — that is, they are not sensitive to the photon number. In section
6.3.3, we experimentally test pseudo-number resolving detectors constructed from
many non-number-resolving parts.

The detectors used throughout this thesis were Perkin-Elmer silicon avalanche
photodiodes(APDs), operating in Geiger (free-running) mode. A strong reverse bias
is applied to a silicon P-N junction, such that a single incident photon is sufficient
to raise an electron from the valence band into the conducting band, triggering an
avalanche of electric current amplification, and leading to a voltage pulse across the
diode. This pulse is detected and conditioned by a digital microprocessor, which
ultimately outputs a clean TTL pulse for time-correlated counting. Silicon APDs
typically achieve a quantum efficiency of ∼ 60% at 808nm, although this can vary
significantly between devices, and exhibit typical dark-count rates on the order of
100Hz. While the diode itself is maintained significantly below room temperature
by a Peltier cooling system, Si APDs do not require cryogenic cooling, facilitating
our experiments.

1.6.5 Integrated quantum photonics

Bulk optics has historically been very successful as a platform for proof-of-principle
tests of quantum physics, as well as rapid prototyping of quantum technologies.
However, this approach — in which cm-scale optical elements are bolted to a ∼ 3m
× 1.5m optical bench weighing ∼ 1 t — is not expected to scale to experiments
demanding large numbers of photons or qubits. First, there is simply not enough
physical space in a typical laboratory. Secondly, as the complexity of the optical
apparatus is increased, the demand on the experimentalist in terms of alignment
and stabilization grows rapidly.

In recent years, as optical networking, energy efficiency, and parallelism have be-
come increasingly important for general-purpose computing, there has been renewed
interest in the all-optical transport, switching, and processing of large volumes of
classical information. In the course of development of these technologies, which
include optical interconnects and fast fiber-optic network switches, there has been
considerable investment in the field of integrated photonics : monolithic, miniaturized
chips which generate, guide, manipulate and measure light.

In 2008, Politi et al. reported [94] the first demonstration of an integrated quan-
tum photonic chip. The authors used established commercial fabrication techniques
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to construct complex linear-optical networks of beamsplitters on a cm-scale optical
chip. These devices were shown to support high-fidelity [95] classical and quantum
interference of single photons generated by SPDC, with a reported HOM-dip visi-
bility of 1.001± 0.004%. These were the first results in what is now a broad field of
integrated quantum photonics. Other early demonstrations include on-chip quantum
metrology [96] and a compiled implementation of Shor’s factoring algorithm [74].

IQP provides a reduction in the scale of optical circuits, by at least an order of
magnitude with respect to bulk optics. Moreover, monolithic integration provides
operational advantages, one of the most significant of which is intrinsic stability
of optical phase and mode-matching. This inherent stability has since allowed a
number of demonstrations using path-encoded qubits, which in bulk optics are ex-
tremely susceptible to mechanical vibration and thermal drift. Moreover, owing
to the degree of control and precision afforded by modern lithographic fabrication
techniques, mode-matching at integrated beamsplitters can be very well-engineered,
further improving the visibility of quantum and classical interference. These ad-
vantages in scale and stability immediately enabled the demonstration of quantum
effects in circuits which would be unmanageably complex in a bulk-optical setup.
Peruzzo [97] reported quantum walks of photon pairs in an array of 21 sites (see
section 6.3), as well as quantum interference in a 4-mode coupler [98]. Since the
on-chip propagation distance can be much smaller than that of the equivalent bulk
setup, integrated quantum photonic chips can also serve to reduce net photon loss,
accelerating the speed at which experiments can be performed.

The first demonstrations of IQP used a lithographically-fabricated glass (silica)-
based material system (section 2.2.1). More recent demonstrations have highlighted
the potential benefits of various alternative materials and fabrication techniques.
Of particular interest is the prospect of integrated SPSs and single-photon detec-
tors, together with classical digital electronics, potentially enabling a full quan-
tum system-on-a-chip. Integrated spontaneous sources have been reported in silicon
[56, 99] and lithium niobate [100]. Integration of optical waveguides with high-
efficiency superconducting single-photon detectors was reported by Calkins et al.
[101]. Increasingly sophisticated devices [102–104] have recently been fabricated us-
ing a direct-write technique [105], which also allows for three-dimensional waveguide
structures [106, 107].

In the following section, we describe the design and implementation of a novel
quantum photonic chip, incorporating two path-encoded qubits. We then go on to
show the utility and flexibility of this chip in chapters 3–5. This device, if constructed
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in bulk, would occupy a full optical bench — clearly illustrating the significant
practical advantage already afforded by IQP.
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Machines take me by surprise with great frequency.

Alan Turing

Chapter 2

A reconfigurable two-qubit chip

2.1 Introduction

The discovery and development of universal computing machines is one of the great-
est scientific accomplishments of the 20th century. The Church-Turing thesis — that
all calculable functions can be computed by a particularly simple type of machine
— is generally expressed as a statement about mathematical functions, and the
evaluation of numbers. However, the influence of universal computing machines has
stretched much further than the academic mathematical context in which they were
first conceived, having profound effects on social, economic and artistic life.

The prospective benefits of quantum computing enjoy a similar promise of uni-
versality. Specifically, we believe [1] that a scalable machine satisfying the DiVin-
cenzo criteria (section 1.4.1) would be universal for quantum computing, and could
run any quantum algorithm, prepare any quantum state or operator1, and would
also be universal for classical computation. This promise allows us to progress with
the development of the basic building blocks of quantum information technologies,
without complete information on the potential applications of quantum computing:
although we have a small number of specific examples of quantum algorithms which
provide an exponential speedup over classical machines, it is reasonable to think

1Note that this does not imply any particular scaling: arbitrary N -qubit state preparation is
exponentially hard even for quantum computers. See chapter 5 for further discussion.

77



78

that, as with classical computation, the scope of useful applications will ultimately
prove to be much broader.

The results of KLM (section 1.6.2), together with more recent developments in
cluster-state theories [2–5], show that in principle LOQC can provide a scalable route
to universal quantum computation. More recently, integrated quantum photonics
(section 1.6.5) has been shown to offer an experimentally scalable approach to the
construction of LOQC machines, potentially allowing millions [6] of components to
be lithographically fabricated on a single monolithic chip. Early results in the field
include the demonstration of quantum interference in passive linear optical interfer-
ometers [7–10], as well as active devices with reconfigurable phase shifters[11–13].
Notably, most of these reconfigurable devices used a single phase shifter, giving the
device a single classical control parameter. This was sufficient for novel demonstra-
tions of quantum metrology [11] and switching of entangled photonic states [13].
However, much of the utility and interest of a universal quantum computer arises
from the fact that a single machine can be arbitrarily reconfigured to perform a
broad variety of tasks. This degree of reconfigurability requires a large (polynomial)
number of classical control parameters, and is the main focus of work described in
this section.

We describe a waveguide linear-optical circuit which can encode and manipulate
the state of two photonic qubits using two indistinguishable photons from an SPDC
source. This device features eight voltage-controlled phase shifters, which can be
arbitrarily reconfigured to prepare any two-qubit state. The architecture of the
device includes four reconfigurable single-qubit operations, together with a passive
two-qubit entangling gate. As such, the gate operations implemented in this device
comprise a universal quantum gate set (section 1.4.1).

In close analogy with classical computers, we find that the degree of reconfig-
urability afforded by this device has allowed a surprisingly rich variety of physical
phenomena and quantum information techniques to be studied, above and beyond
the original intent of the device. Indeed, chapters 3, 4, and 5 all make use of the two-
qubit chip described here. This work highlights the fact that nontrivial experiments
can be performed using even a very small number of qubits, in contrast with the
classical case — where the scope of worthwhile experiments using only two classical
bits is limited.

To our knowledge, this work includes the first experimental implementation of
photonic two-qubit quantum state and process tomography (where state prepara-
tion and measurement were performed on-chip), and the first photonic on-chip Bell
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Figure 2.1: CNOT-MZ chip. (a) Circuit-model diagram. Two qubits are prepared
in the |00〉 state. H ′ is a Hadamard-like gate corresponding to a directional coupler,
with the same unitary matrix representation as a beamsplitter (1.119). Rz(φ) corre-
spond to voltage-controlled phase shifts, and implement single-qubit rotations about
the z-axis of the Bloch sphere (1.148). At the centre of the chip is a two-qubit CNOT-
P entangling gate, locally equivalent to the maximally entangling CNOT gate. Each
qubit can be effectively measured in an arbitrary basis, by combining single-photon
rotations with measurement in the z-basis. (b) Waveguide architecture. All DCs
have coupling ratio η = 1/2, apart from c6 ,c7 and c8, which are engineered to
transmit a fraction η = t = 2/3 of incident light. Two indistinguishable photons
generated by type-I SPDC are coupled into the chip, and encode two qubits in path.
Waveguides w2,3 and w4,5 correspond to the |0〉 and |1〉 states of the control and
target qubit respectively. Waveguides w1 and w6 do not correspond to logical basis
states. The first stage of the chip uses two MZIs and four phaseshifters to implement
arbitrary two-qubit separable state preparation. The central section implements the
CNOT-P gate. The final section of the chip uses two MZIs, together with off-chip
single-photon detection, to implement arbitrary separable two-qubit measurements.

inequality violation.

2.2 CNOT-MZ

The CNOT-MZ is a reconfigurable quantum photonic chip, shown schematically
in figure 2.1(b). Two qubits are encoded in path, using indistinguishable photon
pairs at 808nm, generated by type-I SPDC. The chip uses a total of 6 waveguides,
13 directional couplers and 8 voltage-controlled thermal phaseshifters to implement
the circuit model diagram shown in figure 2.1(a).

The architecture of the chip is based around a passive postselected linear-optical
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Silicon substrate

Silica lower cladding

P/Bo-doped silica cladding

P/Bo-doped silica cladding

Ti/Pt/Au contacts

Ge/Bo-doped silica core

Ti/Pt resistive heater

Au wire to PCB

Figure 2.2: Silica-on-silicon material system and waveguide geometry. Square 2.5 µm
× 2.5 µm waveguides were fabricated in germanium/boron-doped silica, on a sil-
icon substrate. The waveguide cladding is a combination of undoped silica and
phosphorous/boron-doped silica. Titanium/platinum/gold traces connect to tita-
nium/platinum resistive heaters, allowing a reconfigurable voltage-controlled phase
shift to be applied. Contact pads were gold-wire-bonded to a standard PCB.

CNOT (CNOT-P) gate, which implements a maximally entangling CNOT-like oper-
ation on the two qubits. This gate is discussed in detail in section 2.2.4. The control
qubit is encoded using waveguides w2 and w3, corresponding to the |0〉 and |1〉 states
respectively, and the target qubit is similarly encoded across w4 and w5. Each qubit
is initially prepared in the |0〉 state, with photon pairs coupled directly from the
source into waveguides w2 and w4. Arbitrary state preparation of each qubit is then
accomplished using an MZI with two phaseshifters, as described in section 2.2.5. At
the output of the CNOT-P gate, each qubit is measured in a local basis using an
MZI together with two single-photon detectors, as described in section 2.2.6.

The device was fabricated by CIP technologies [14] in a silica-based material
system, described in section 2.2.1. The chip die is 3mm wide and 70mm long. Full
details of the photon source, control system and supporting experimental setup are
given in section 2.3.

2.2.1 Silica-on-Silicon

Glass (silica) waveguides are particularly well-suited for quantum applications. In
particular, they exhibit very low propagation loss (< 0.1 dB cm−1), couple well to
single-mode optical fibre (typically ∼ 70% coupling efficiency), and are transparent
to the band around ∼ 800nm where SPDC sources and room-temperature APD
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single-photon detectors are most efficient. Propagation/coupling loss and detec-
tion efficiency are particularly important in multiphoton experiments, where the
N -photon detection rate typically falls off exponentially with overall loss η as 1/ηN .
The main disadvantage of this material system is the limited refractive index con-
trast, typically on the order of ∆ = 0.5%. This imposes a large minimum waveguide
bend radius of ∼ 15mm (see section 1.5.1), leading to 200 µm-wide directional cou-
plers on the order of ∼ 6mm in length. Recently, more compact devices have been
achieved using alternative material systems, at the cost of greater loss (see sections
6.3.3, 6.3.3 and 2.10).

The CNOT-MZ device was fabricated using silica-on-silicon planar lightwave
circuit technology, shown in figure 2.2. A 16 µm buffer layer of undoped silica was
grown on a silicon substrate, forming the lower cladding of the waveguides. A
3.5 µm layer of silica doped with germanium and boron oxides was overgrown, and
was then lithographically etched to form the square 3.5 µm × 3.5 µm waveguide
core, with a refractive index contrast between core and cladding of ∆ = 0.5%. A
16 µm-thick upper cladding of silica, doped with phosphorous and boron to match
the lower cladding, was then overgrown. Finally, a metallic layer was deposited and
lithographically etched to form resistive heaters, electrical connections, and probe
contact pads on the top surface of the chip.

The waveguides used here have a symmetric (square) profile, which together
with the amorphous, isotropic nature of silica leads to negligible birefringence. As
a result, in principle these waveguides will support any single polarization of light.
Although on-chip polarization encoding has been demonstrated in a number of ma-
terial systems [13, 15, 16], it remains challenging — in particular due to unwanted
rotations introduced by waveguide bends — and in this work we operate in vertical
polarization only.

2.2.2 Directional Coupler

Leading approaches to the implementation of two-mode beamsplitter operations in
integrated photonics include multimode interference (MMI) couplers and DCs. Here
we consider the latter, illustrated in figure 2.3, in which two waveguides are brought
close together so as to couple the guided modes via the evanescent field (section
1.5.1). Any DC is characterised by its coupling ratio η, corresponding to the fraction
of optical power transmitted from one waveguide to the other, which is equivalent
to the BS transmissivity (section 1.5.2) and is controlled by the separation distance
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Figure 2.3: Geometry of a directional coupler. Two waveguides are adiabatically
brought into close proximity, such that the evanescent fields overlap. Light peri-
odically couples from one waveguide to the other as a function of the propagation
distance L and the coupling constant κ, which depends in part on the spatial sepa-
ration s and refractive index n.

s and length L of the coupling region.

Mode coupling theory [17] gives the relationship between the field amplitude
(1.66) in two coupled waveguides A, B as a system of coupled differential equations

dA(z)

dz
= −iκB(z) ;

dB(z)

dz
= −iκA(z), (2.1)

where κ is a coupling constant which depends on the spatial overlap of the two
guided modes. This leads to solutions of the form

A(z) = A0 cos(κz)−B0i sin(κz) ; B(z) = B0 cos(κz)− A0i sin(κz), (2.2)

where A0, B0 are the initial field amplitudes at the input ports. As a result, in
the coupling region of the DC, optical power oscillates sinusoidally between the two
waveguides as a function of the interaction length L. By tuning this length, the DC
can be designed to implement an arbitrary BS operation (1.119)[

A(L)

B(L)

]
=

[
cos(κL) −i sin(κL)

−i sin(κL) cos(κL)

][
A0

B0

]
= ΛDC(κ, L)
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B0

]
=

[√
t i
√
r

i
√
r
√
t

]
.

(2.3)
In order to obtain a 50:50 DC with t = r = 1

2
, we must therefore have L = π/4κ,

which for the silica-on-silicon material system used here, with s = 3 µm, corresponds
to an interaction length of ∼ 4mm.

The quality of fabrication of directional couplers is critical to the performance
of the reconfigurable two-qubit chip (CNOT-MZ) and other linear-optical quantum
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circuits described in this thesis. Deviation from the designed coupling ratio leads to
unitary errors in qubit state preparation and measurement, and reduces the contrast
of classical interference. Moreover, errors in both coupling ratio and imperfect mode-
matching at the interaction region of the coupler lead to reduced visibility of HOM
interference, and thus contribute to the observed sub-unit quantum state/process
fidelities reported in sections 2.6, 2.7 of this thesis.

2.2.3 Thermal Phaseshifter

The general-purpose flexibility of the CNOT-MZ is achieved through the inclusion
of eight reconfigurable phase shifters, as shown in figure 2.1. In silica-on-silicon, re-
configurable phase shifts are most easily implemented using the thermo-optic effect.
Here, a metallic (titanium/platinum) resistive heater of length L is lithographically
patterned on the top surface of the upper waveguide cladding, directly above the
waveguide core, as shown in figure 2.2. This heater is connected via Ti/Pt/Au
electrodes to a current source, allowing the temperature of a local region of the
waveguide to be precisely controlled via Ohmic heating. This gives rise to a to a
change in the refractive index of the local core and cladding, with dn/dT ∼ 10−5/K,
increasing the effective path length and leading to a phase shift ϕ with respect to
the unperturbed waveguide.

The maximum temperature difference supported by the silica-on-silicon material
system is ∼ 30◦C, and in order to achieve a range in phase of 2π the resistive heater
must therefore have a length on the order of 4mm. The heaters are rated for a
maximum voltage of 5V, however in order to achieve a full 2π phaseshift in all MZIs
we had to exceed this limit, running most phaseshifters between 0V and 7V, leading
to a total of ∼ 1W per heater at maximum voltage. I-V curves for each resistive
heater on the CNOT-MZ are shown in figure 2.8(d), showing a typical resistance of
R ∼ 60 Ω. Further details of phaseshifter calibration are given in section 2.3.3.

The main drawback of thermal phase shifting is switching speed: in the silica-
on-silicon platform used here, heating/cooling of a phaseshifter for a differential
phaseshift of π takes at least ∼ 100ms (figure 2.8(c, inset)). This limits the scope of
applications — for instance, active feed-forward is not possible using this technology.
However, in the majority of experiments described in this thesis, the time taken to
acquire a sufficient number of single-photon detection events, corresponding to a
single measurement of an expectation value, is typically at least 1 s, and in practice
there was not any need to switch phases faster than 1Hz. Alternative material
systems for integrated quantum photonics support an electro-optic effect, where
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phase can switched electrically up to GHz frequencies. See [13] for an example in
lithium niobate.

2.2.4 Linear-optical CNOT-P gate

It was shown by Lloyd [18] that almost any two-qubit entangling gate is universal
for quantum computing, and by DiVincenzo that a universal gate set can always
be constructed from a two-qubit entangling gate together with single-qubit rota-
tions [19]. We have seen in section 1.5.4 that deterministic, arbitrary single-qubit
rotations are very easily constructed using linear optics. However, since photons
do not interact, the greatest challenge (and the greatest accomplishment of KLM),
is to find a scalable two-qubit entangling gate. All scalable approaches to linear
optical quantum computing (LOQC), including KLM and more recent cluster-state
techniques (section 1.6.2, 1.4.1), depend on active feed-forward. At the time of writ-
ing, although fast switching, low propagation loss, high refractive-index contrast,
integrated GHz logic and single-photon detectors, etc. have all been demonstrated
in separate photonic devices, no existing technology or material system satisfies all
necessary conditions for a full demonstration of scalable LOQC with active feed-
forward. Certainly, the thermal phase-shifters previously described are too slow for
such applications.

In 2002, two groups [20, 21] proposed a scheme by which a two-qubit maximally-
entangling gate can be implemented using linear-optics and postselection, without
any need for feed-forward. It has already been stated (section 1.6.2) that LOQC is
not scalable without feed-forward, and indeed this gate does not scale — successful
operation of the gate is postselected with probability 1/9, leading to exponentially
decreasing success probability for composite circuits. However, the scheme is ex-
perimentally much more accessible, and an experimental demonstration was almost
immediately reported by a number of groups [22–25]. An important property of the
design of this postselected gate is that it possesses many of the same experimen-
tal prerequisites — indistinguishable photons, high visibility classical and quantum
interference, stable interferometers — as the scalable CZ gate of KLM, and exper-
imental implementations of the former thus constitute real progress towards the
latter.

We will now sketch the basic mechanism of the postselected two-qubit gate,
starting from an implementation of the CZ gate. CZ is a maximally entangling
gate, which flips the sign of the target qubit when both input qubits are in the state
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Figure 2.4: CNOT-P gate construction. (a) Postselected linear-optical CZ gate,
without dump modes. Control and target qubits are encoded in path, using indis-
tinguishable single photon pairs. Postselecting on detection events in the two-qubit
subspace, quantum interference at the 1/3-reflectivity beamsplitter gives rise to a
relative phase shift of −1 for the |11〉 input state. Note that as shown, the effective
gate operation after postselection is not unitary. (b) Waveguide implementation
of a linear-optical CNOT-P gate. 1/3-reflectivity DCs in the central region of the
device implement a CZ gate, where the top and bottom couplers “dump” probability
amplitude, avoiding the non-unitarity of the device shown in (a). By adding two
1/2-reflectivity DCs to the target qubit, the CZ gate is converted to a CNOT-like
gate, acting on the logical basis. This gate forms the basis for the CNOT-MZ circuit,
figure 2.1.

|1〉:

|0C0T 〉in → |0C0T 〉out, |0C1T 〉in → |0C1T 〉out,

|1C0T 〉in → |1C0T 〉out, |1C1T 〉in → −|1C1T 〉out, (2.4)

and is therefore described by a unitary operator

ÛCZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 . (2.5)

In order to see how this gate can be implemented in linear optics, it will be instructive
to first consider the circuit shown in figure 2.4(a). If two photons are injected into
modes C0 and T0, encoding the logical input state |0C0T 〉in, the resulting evolution
is trivial

|0C0T 〉in = â†C0
â†T0
|0〉 → (iâ†C′0

)(iâ†T′0
)|0〉 = −|1C′0

0C′1
1T′0

1T′1
〉 = −|0C0T 〉out, (2.6)

where the phase i arises from reflection at the mirrors. Similarly, for input states
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|0C1T 〉in and |1C0T 〉in the two photons never meet, and the system evolves as

|0C1T 〉in = â†C0
â†T1
|0〉 → (iâ†C′0

)(i
√
r â†T′1

+
√
t â†C′1

)|0〉

= −
(√

r |1C′0
0C′1

0T′0
1T′1
〉+
√
t |1C′0

1C′1
0T′0

0T′1
〉
)
, (2.7)

|1C0T 〉in = â†C1
â†T0
|0〉 → (i

√
r â†C′1

+
√
t â†T′1

)(iâ†T′0
)|0〉

= −
(√

r |0C′0
1C′1

1T′0
0T′1
〉+
√
t |0C′0

0C′1
1T′0

1T′1
〉
)
, (2.8)

where further phases i arise from reflection at the BS. Now, the Fock states |1C′0
1C′1

0T′0
0T′1
〉

and |0C′0
0C′1

1T′0
1T′1
〉 have both photons occupying the same qubit, and do not have

a representation in the two-qubit encoding. We must therefore postselect on the
two-qubit subspace, resulting in the effective evolution

|0C1T 〉in → −
√
r |0C1T 〉out ; |1C0T 〉in → −

√
r |1C0T 〉out. (2.9)

When the input state is |1C1T 〉in, the two photons meet at the beamsplitter and
undergo quantum interference as described in section 1.5.3. The system then evolves
as

|1C1T 〉in = â†C1
â†T1
|0〉 →

(
i
√
r â†C1

+
√
t â†T1

)(
i
√
r â†T1

+
√
t â†C1

)
|0〉, (2.10)

|ψ〉out =
(

(t− r)â†C1
â†T1

+ i
√
r
√
t â†C1

â†C1
+ i
√
t
√
r â†T1

â†T1

)
|0〉, (2.11)

where we have used the relation
[
â†C1

, â†T1

]
= 0, since the two photons are indis-

tinguishable. Postselecting on the C1T1 term, which is the only component corre-
sponding to a two-qubit state, we find

|1C1T 〉in → (t− r)|1C1T 〉out (2.12)

Setting r = 1− t = 1/3, we arrive at

|0C0T 〉in → −|0C0T 〉out, |0C1T 〉in →
−1√

3
|0C1T 〉out,

|1C0T 〉in →
−1√

3
|1C0T 〉out, |1C1T 〉in →

1

3
|1C1T 〉out. (2.13)

Neglecting the global phase of −1, we have then accomplished the essential function
of the CZ gate: a conditional phaseshift by −1 of the |1C1T 〉 term only. However,
this postselected operation does not correspond to a unitary operator on the qubit
subspace, and is clearly biased towards the |0C0T 〉 state. To overcome this issue, we
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simply replace the mirrors shown in figure 2.4(a) with 1/3-reflectivity beamsplitters.
It is easy to see that this has the effect of multiplying the amplitudes of the |0C0T 〉,
|0C1T 〉 and |1C0T 〉 terms by factors of 1/3, 1/

√
3 and 1/

√
3 respectively, balancing

the gate, and restoring unitarity. The circuit then exactly reproduces the behaviour
of the CZ gate, conditional on detection of one photon in C0 or C1 and one photon
T0 or T1. By the Born rule, this occurs with probability 1/9. It has been shown that
this success probability is optimal for linear-optical two-qubit gates of this type [26].
A waveguide implementation is shown in the center of figure 2.4(b).

The CZ gate together with local rotations is universal for quantum comput-
ing. However, the CNOT gate, which is the quantum equivalent of a classical re-
versible exclusive-OR (XOR) gate, is often conceptually easier to handle than CZ.
The CNOT gate flips the state of the target qubit, conditional on the state of the
control

|0C0T 〉 → |0C0T 〉 , |0C1T 〉 → |0C1T 〉 , |1C0T 〉 → |1C1T 〉 , |1C1T 〉 → |1C0T 〉.
(2.14)

Starting from the CZ gate, this is easily constructed by the addition of two single-
qubit Hadamard operations

ÛCNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 =
(
1⊗ Ĥ

)
ÛCZ

(
1⊗ Ĥ

)
. (2.15)

Since the single-qubit Hadamard gate is almost equivalent to a beamsplitter op-
eration, this leads to a natural construction of the linear-optical CNOT gate by
the addition of two 1/2-reflectivity beamsplitters or DCs, as shown in figure 2.4(b).
Note that this gate does not exactly reproduce the two-qubit unitary ÛCNOT, instead
implementing the locally equivalent operation

ÛCNOT−P =
(
1⊗ ÛBS

)
ÛCZ

(
1⊗ ÛBS

)
=


0 i 0 0

i 0 0 0

0 0 1 0

0 0 0 −1

 . (2.16)

As such we will refer to this postselected gate operation generated by the circuit in
figure 2.4(b) as CNOT-P, to distinguish from the canonical CNOT gate. This gate
was demonstrated in bulk optics by a number of groups [22–24, 27]. More recently,
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(a) (b)

Figure 2.5: State preparation and measurement of a single path-encoded qubit in
linear optics.

the CNOT-P was implemented in a silica-on-silicon integrated platform [7], and
formed the basis for a linear-optical implementation of Shor’s factoring algorithm
[28].

It is important to emphasize that the basic mechanism of the CNOT-P gate
depends necessarily on two-photon quantum interference, and that the gate fails if
the input photon pair is made distinguishable.

2.2.5 State preparation

The first stage of the CNOT-MZ is used to prepare two qubits in an arbitrary
separable state. Two photons from the source are always injected into waveguides
i2 and i4 respectively, encoding the state |00〉. Each qubit is then acted upon by an
MZI with two phaseshifters φ1, φ2 (figure 2.5(a)). We have already seen that an MZI
with three phaseshifters is adequate for arbitrary single-qubit SU(2) rotations. With
the |0〉 state as input, two phaseshifters are sufficient for arbitrary state preparation:

Ûprep(φ1, φ2)|0〉 =

[
eiφ2/2 0

0 e−iφ2/2

]
i

[
sin(φ1/2) cos(φ1/2)

cos(φ1/2) − sin(φ1/2)

][
1

0

]
= i
(
eiφ2/2 sin(φ1/2)|0〉+ e−iφ2/2 cos(φ1/2)|1〉

)
(2.17)

→ |ψ(φ1, φ2)〉out = sin(φ1/2)|0〉+ e−iφ2 cos(φ1/2)|1〉, (2.18)

where we have neglected the phase ie−iφ2/2. Equation (2.18) thus parametrizes
an arbitrary single-qubit state, up to a global phase. Phase settings to prepare
commonly-used single-qubit states are given in the table below.

|0〉 |1〉 |+〉 |−〉 |+ i〉 | − i〉
φ1 π 0 π/2 3π/2 π/2 π/2

φ2 0 0 0 0 3π/2 π/2
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2.2.6 Measurement

By a similar argument, arbitrary single-qubit projective measurements can be per-
formed using an MZI with two phaseshifters φ1, φ2, together with two singl-photon
detectors D0, D1 (figure 2.5(b)). Each detector projects onto a logical basis state

Π̂D0 = |0〉〈0| ; Π̂D1 = |1〉〈1| ; P (0|ψ) = |〈0|ψ〉|2 = Tr
[
ρ̂ Π̂D0

]
= 1− P (1|ψ).

(2.19)
Assigning eigenvalues of ±1, the effect of the two detectors together can be written
as a projective measurement M̂ with spectral decomposition

M̂ =
∑
i

λi|λi〉〈λi| = |0〉〈0| − |1〉〈1|, (2.20)

which is equivalent to measurement in the z-basis (M̂ = σ̂z). To measure in a
different basis, we apply a unitary rotation Ûmeas to each qubit prior to detection
using the MZI shown in figure 2.5(b). This evolves an input state |ψ〉in as

|ψ〉out = Ûmeas(φ1, φ2)|ψ〉in = −i

[
sin(φ2/2) cos(φ2/2)

cos(φ2/2) − sin(φ2/2)

][
eiφ1/2 0

0 e−iφ1/2

]
|ψ〉in

(2.21)
and the overlap between the |ψ〉in and each eigenstate |λi〉 of σ̂z becomes 〈λi|ψin〉 =

〈λi|Ûmeas|ψout〉. To find the effective measurement operator M̂ ′(φ1, φ2), we therefore
propagate the projectors (2.19) backwards through the unitary

|λ′i〉 = Û †meas(φ1, φ2)|λi〉 ; (2.22)

M̂ ′(φ1, φ2) =
∑
i

λi|λ′i〉〈λ′i| = Û †meas(φ1, φ2) σ̂z Ûmeas(φ1, φ2). (2.23)

By a similar argument to that used in section 2.2.5, Û †meas can map |0〉 and |1〉 to
any desired eigenstate |λ〉, and M̂ ′ can therefore be made to implement any desired
single-qubit projective measurement. Phase settings to measure in the Pauli basis
are given in the table below.

σ̂x σ̂y σ̂z

φ1 0 π/2 0

φ2 π/2 3π/2 π
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2.2.7 CNOT-MZ is universal

The CNOT-MZ can prepare any entangled or separable pure two-qubit state, up
to a global phase. To see this, first note that by the Schmidt decomposition [29],
any pure two-qubit state can be expressed as an arbitrary superposition of two
orthogonal separable states

|ΨCT 〉 = α|0C0T 〉+ β|0C1T 〉+ γ|1C0T 〉+ δ|1C1T 〉 (2.24)

=
√
λ |λC〉 ⊗ |λT 〉+

√
1− λ |λ⊥C〉 ⊗ |λ⊥T 〉. (2.25)

where λ is a real nonnegative number. This immediately implies that the state has
six independent real parameters

|ΨCT 〉 =
√
λ
(
cos θC |0〉+ eiφC sin θC |1〉

) (
cos θT |0〉+ eiφT sin θT |1〉

)
(2.26)

+ eiφr
√

1− λ
(
e−iφC sin θC |0〉 − cos θC |1〉

) (
e−iφT sin θT |0〉 − cos θT |1〉

)
, (2.27)

up to a global phase. To show that this arbitrary state can be prepared by the
CNOT-MZ with |00〉 as input, we will propagate (2.25) backwards through the
circuit. By the same argument given in section 2.2.5, the MZI comprising DCs c10

and c12, together with phaseshifters φ5 and φ7, can be configured to map the control
qubit into the |0〉, |1〉 basis

|Ψ′〉 =
(
Û †meas(φ5, φ7)⊗ 1

)
|ΨCT 〉 =

√
λ |0〉 ⊗ |λT 〉+ eiφr

√
1− λ |1〉 ⊗ |λ⊥T 〉. (2.28)

Propagating backwards through the CNOT-P gate, the target qubit is flipped con-
ditional on the control:

|Ψ′′〉 = Û †CNOT−P|Ψ′〉 =
√
λ |0〉 ⊗ |λT 〉+ eiφr

√
1− λ |1〉 ⊗ |λT 〉. (2.29)

We then use the MZI formed by DCs c2 and c4, together with φ2 and φ4, to rotate
the target qubit:

|Ψ′′′〉 =
(
1⊗ Û †prep(φ2, φ4)

)
|Ψ′′〉 =

(√
λ |0〉+ eiφr

√
1− λ |1〉

)
⊗ |0〉, (2.30)

and finally rotate the control, using c1 and c3 together with φ1 and φ3

|Ψ〉in =
(
Û †prep(φ1, φ3)⊗ 1

)
|Ψ′′′〉 = |00〉. (2.31)
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Figure 2.6: CNOT-MZ experimental setup. A Toptica iBeam 404nm CW laser
pumps a BiBO nonlinear crystal, cut and phase-matched to generate degenerate
808nm photon pairs by type-I SPDC. Spectral indistinguishability is optimized using
tilted Semrock Maxline 3 nm notch interference filters (IF). The pump is absorbed
by a beam dump (BD). Photon pairs are coupled in and out of the CNOT-MZ
through optical fibre and V-groove fiber arrays (VG). PMF is used at the input, as
HOM interference is sensitive to the polarization of incoming photons, while SMF
can be used at the output, as the detectors are not strongly polarization-sensitive.
A current source connects to resistive heaters onboard the chip via a custom PCB.
Four Si-APD single-photon detectors, together with an FPGA, are used to count
coincidences at the output of the chip.

This capability is used to the fullest extent in chapter 5 of this thesis.

2.3 Experimental setup

The full experimental setup is shown schematically in figure 2.6. The input and
output ports of the CNOT-MZ were butt-coupled to two V-groove fiber arrays,
each holding six single-mode optical fibres with 250 µm pitch, to match that of the
waveguides. Using an oil-based index-matching fluid at the chip-fibre interface, a
fibre-to-fibre coupling efficiency of ∼ 60% was typically achieved. PMF fibre was
used at the input of the chip, so as to preserve indistinguishability of the incoming
photon pair, while SMF was employed at the output. The chip die was mounted
on a standard PCB, to which the electrodes of each resistive heater were gold-wire
bonded. This PCB provides a pinout via two standard 8-pin headers to an 8-channel
DC current source.

2.3.1 Photon pair source

The CNOT-MZ requires two indistinguishable photons as input. Arguably (see
ref. [30]), the CNOT-P gate does not depend on entanglement from the source —
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Figure 2.7: The visibility of the HOM dip is a crucial factor for the performance
of the CNOT-P gate. A number of measures were taken to optimize the visibility
of quantum interference between photon pairs generated by the type-I source. (a)
Experimental data showing the spectra of single photons generated in the two arms
of the source (red, blue respectively). (i) Spectra measured prior to optimization
of the source. By tilting interference filters placed in each beam, we ensured that
photon pairs sent to the CNOT-MZ were maximally spectrally indistinguishable
(ii). The small peaks are due to stray light from an LCD computer monitor. (b)
HOM visibility measured as a function of BiBO crystal orientation, which affects
the polarization and spectral distinguishability of downconverted photon pairs.

certainly, the Fock state needed to run the gate and encode the control and target
qubits, |1V 11V 2〉 = |V V 〉 will not violate a Bell inequality as-is, and is not entangled
in polarization. This state is naturally generated by postselection on coincidental
detection of two photons from the type-I SPDC state (1.168).

The two-photon source used throughout this thesis is shown in figure 2.6. A
404nm CW laser (Toptica iBeam) pumps a 2mm-thick BiBO crystal, cut and
phase-matched for type-I SPDC, with a 3◦ opening angle. Downconverted pho-
ton pairs, both of which are vertically polarized, were filtered using 3 nm full-width
half-maximum (FWHM) notch interference filters(IFs), and then coupled into PMF
using an arrangement of prisms together with 11mm aspheric lenses. One collection
stage was mounted on a motorized linear actuator with micron resolution, allowing
the relative arrival time — and thus the temporal distinguishability — of the pho-
ton pair to be precisely controlled. Using Perkin-Elmer silicon APD single-photon
detectors with a quantum efficiency of ∼ 60%, we measured a typical single-photon
count-rate S of ∼ 1× 106 Hz, and a coincidence count-rate C of ∼ 1× 105 Hz, im-
plying a collection efficiency of C/S ≈ 10%.

Photon indistinguishability is a crucial factor for high-fidelity operation of the
CNOT-P gate. We first ensured temporal overlap of the downconverted photon pair
by matching optical path lengths of the two arms of the source to within the photon
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Figure 2.8: Calibrating the CNOT-MZ. (a) Single-photon interference fringes,
measured using heralded single photons from the SPDC source, as a function of
resistive heater control voltage. Black dots show the experimental data, up to a
maximum rated voltage of 7V. Blue lines show a fit to the data, whose parameters
completely characterise the phase-voltage relation of each heater. (b) Phase-voltage
relations for each thermal phase shifter, based on fit parameters from (a). The
dominant component is quadratic, φ ∝ ∆T ∝ P = IV ∝ V 2. (c) Optical intensity
measured at the output of the CNOT-MZ, as heaters are switched on and off. The
chip deforms under load, resulting in optical decoupling of the V-groove arrays, seen
as an immediate dip in intensity as the heater is switched and held on (red line).
In order to minimize the extent of decoupling we pulse current to each heater, only
measuring coincidence events while the heater is switched on (blue line). Inset:
zoom showing the response time of the phaseshifter, ∼ 100ms. (d) Superimposed
I-V curves of all eight heaters. The characteristic nonlinearity at high voltage is due
to increased resistance of the heating element at high temperatures.

coherence length (∼ 500 µm) using the linear actuator, measuring two-photon HOM
interference in a fiber-coupled 50:50 BS. In order to optimize the spectral indistin-
guishability of the photon pair, we measured spectra of down-converted photons in
each arm while tilting interference filters, shifting the wavelength of the transmitted
band (figure 2.7(a)) and leading to a measurable increase in the visibility of the
HOM dip. Finally, we scanned the orientation of the BiBO crystal which affects
both pair collection efficiency and polarization distinguishability, further optimizing
the visibility of quantum interference (figure 2.7(b)).
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2.3.2 Control, automation and readout

Many of the experiments presented throughout this thesis depend on the ability to
perform hundreds or thousands of consecutive measurements, each with different
phase settings. As such, it was important that the experimental setup be fully auto-
mated. The eight heaters of the CNOT-MZ were driven by a National Instruments
digital-to-analog converter (DAC), providing eight computer-controlled voltages in
the range [0, 7] V. An eight-channel current amplifier was necessary to satisfy the
power draw of the heaters, a total of ∼ 1W per heater at maximum voltage.

Under typical conditions, when all eight heaters are active, the chip dissipates
around ∼ 1W of heat energy. An experimental difficulty is then presented by the
fact that the top surface of the chip, where the heaters and waveguides are located,
is raised to a higher temperature than the substrate, leading to thermal expansion
and distortion of the chip itself. This leads to movement of the chip facets and
decoupling of the waveguides from the V-groove arrays(VGs), as shown in figure
2.8(c). To solve this issue, we found that the best compromise between coupling
efficiency, stability and repeatability was achieved by pulsing current to the heaters,
with a duty cycle tmeasure/tcool∼ 5%. Current was first supplied to the chip for 1 s,
allowing the phaseshifter to warm up and stabilize, and was then held on for a
further 1 s, while single-photon detection events were measured. The current source
was then switched off, allowing the chip to cool for 15 s, after which the cycle was
repeated for the next measurement setting.

This decoupling effect was exacerbated by the fact that the fiberglass PCB ma-
terial, upon which the chip was directly mounted, is a thermal insulator. Ideally, the
chip would instead be mounted on a conducting heat sink, or a Peltier-effect ther-
moelectric cooling system. We expect that this difficulty could be further mitigated
using standard chip packaging techniques, in which the VGs are glued directly to
the chip facets. Dispensing with the need to periodically cool the chip would lead
to an overall improvement in efficiency by a factor of ∼ 20. This would facilitate
experiments demanding large numbers of measurements, such as those described in
chapter 5. As with classical central processing units(CPUs), heat dissipation will
likely remain a significant experimental consideration as the scale and complexity
of reconfigurable integrated quantum photonic chips is increased.

The coincidence-counting system was based around a Xilinx Virtex-5 FPGA.
This system was configured to count a specified subset of single detection events and
coincidences, with a fixed coincidence window of 5 ns. In all coincidence-counting
experiments there is a nonzero probability of detection of temporally distinguishable
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photons generated in separate downconversion events. These accidental coincidences
lead to a constant background coincidence rate (5% of the true count-rate), reduc-
ing the apparent visibility (1.134) of quantum interference. In order to correct for
this background and obtain a more accurate measure of the performance of the de-
vice, during all single-photon measurements presented in this thesis (except those
described in sections 6 and 4.5), the background rate of accidental coincidences for
each detection pattern was constantly measured and subtracted from the experimen-
tal data. This measurement was performed by inserting an electronic delay � 5 ns
between pairs of detectors, and measuring the resulting coincidence count-rate. See
section 6.2 for further discussion of correlated single-photon counting systems.

Scripting and control of the experimental setup was performed using the Python
programming language together with a custom library, qy. More recently, access to
the CNOT-MZ has been made available to other researchers and the general public
via an open web interface. Further detail regarding scripting and remote automation
of the CNOT-MZ is given in Appendix A.

2.3.3 Calibration

Applying a voltage V to the resistive heater of a particular MZI, we obtain a phase
shift φ. In order to choose the voltage required to apply a desired phase shift at a
particular MZI, we must find and invert the phase-voltage relation φ(V ). Since the
phaseshift is proportional to the change in temperature of the waveguide material,
the phase-voltage relation is approximately quadratic

φ(V,~a) = a0 + a2V
2 + a3V

3 + h.c ; a3 � a2, (2.32)

where ~a are calibration parameters depending on the geometry and fabrication of
the heater and surrounding waveguides. Here, a3 accounts for higher-order effects
such as those shown in figure 2.8(d), and a0 is the phase in the interferometer at
V = 0, i.e. when the resistive heater is switched off. Imperfect waveguide geometry,
together with imperfections introduced during lithographic fabrication of the heaters
themselves, lead to each MZI having a small nonzero value of a0, which must be
individually calibrated. Moreover, small inconsistencies in heater fabrication lead to
variance in the values of a2 and a3, which also must be individually characterised.

This calibration procedure was accomplished using simple single photon mea-
surements. If bright light or single photons are injected into one port of an MZI,
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the measured intensity at a given output port is a sinusoidal function of φ(V,~a),

ID0 = I0 sin2 (φ(V,~a)/2) ; ID1 = I0 cos2 (φ(V,~a)/2) . (2.33)

Using single photon detectors, we measured fringes of this type for each phaseshifter
of the CNOT-MZ, as shown in figure 2.8. We fit curves of the form (2.33) to this
data with ~a and I0 as free parameters, thus recovering the unique phase-voltage
relation of each heater (figure 2.8). By numerically inverting this function, we can
find the voltage required to set any desired phase in the interval [0, 2π] to any heater
on the CNOT-MZ.

Owing to the geometry of the device, it is not always possible to directly inject
light into a single input port of a particular MZI under test. Moreover, the contrast
of the measured fringe is sometimes dependent on the (initially unknown) phase
inside another interferometer: an example of such an interdependence is seen be-
tween phaseshifters φ2 and φ4. As a result, the full calibration procedure had to be
completed in two stages. We first measured “rough” fringes with only a single resis-
tive heater active at any given time. Approximate information obtained from these
measurements was then used to take full-contrast fringes (figure 2.9) in a second
pass, activating multiple phaseshifters at once to optimize contrast and signal-to-
noise ratio. We expect that such techniques will need to be considerably refined
as the scale and complexity of reconfigurable quantum photonic chips is increased.
Progress on automatic calibration and characterization of such devices was recently
described by Li et al. [31].

As shown in section 1.5.1, uncontrolled polarization rotations in the waveguide,
or coupling to higher-order spatial guided modes, would give rise to reduced contrast
in these single-photon fringes, as would thermal or electric fluctuations (e.g. DAC
noise) in the phase shifter. These effects would reduce the fidelity with which single-
qubit states and measurements can be implemented, and would to all intents and
purposes resemble decoherence of the photonic qubit2, adding unwanted mixture to
the state. High-contrast single-photon fringes are therefore a good indicator of the
quality and single-mode operation of the waveguides, and are a prerequisite for high-
fidelity quantum operations. We measured an average contrast over all eight fringes
of C̄ = 0.988 ± 0.008. From these fringes, we estimated the average experimental
accuracy in phase to be δφ ∼ 0.05 rad. We did not find any significant evidence of
thermal cross-talk between phaseshifters.

2See section 1.6.1.
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Figure 2.9: Single-photon interference fringe, measured at the two outputs of a
single MZI on the CNOT-MZ. Experimental data are presented as black circles,
solid lines show fits to the theory. Error bars, which assume Poissonian statistics,
are too small to draw.

2.4 On-chip quantum interference

In addition to high-fidelity classical interference, as demonstrated in Fig. 2.9, the
basic mechanism of the CNOT-P gate relies on high-fidelity quantum interference.
The same effects that would give rise to reduced contrast of single-photon interfer-
ence would also render photon pairs distinguishable, reducing the visibility of the
HOM dip and thus having a detrimental effect on the performance of the entangling
gate.

In order to accurately assess the visibility of HOM interference supported by the
CNOT-MZ, we first set φ1 = π/2, rendering the interferometer formed by DCs c1 and
c3 (figure 2.1) equivalent to a 50:50 BS. Injecting single photon pairs from the source
into waveguides w2 and w3, we measured the coincidence count-rate C(∆t) at output
ports w1 and w4, as a function of the linear actuator position — corresponding to
a difference ∆t in the relative arrival time of the photon pair. The resulting HOM
dip is shown in figure 2.10.

The shape of the HOM dip is given by a convolution of the wavepacket of down-
converted photons and the top-hat profile of the interference filters. It it therefore
well-approximated by a function consisting of Gaussian and sinc terms, together
with a linear term to account for decoupling of the source as the actuator is moved:
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Figure 2.10: A HOM dip, measured using a single MZI on the CNOT-MZ as a 50:50
BS, as a function of a relative delay between photon pair arrival times, controlled
using the linear actuator shown in figure 2.6. Measured two-photon coincidence
count-rates are shown as black dots. The red line shows a fit to this data comprising
Gaussian, sinc, and linear terms (2.34). The blue line shows a fit to the measured
rate of accidental coincidences, with Gaussian and linear components. Error bars
assume Poissonian statistics.

C(∆t) ≈ (a1∆t+ a2)

[
1− V exp

(
−(∆t− a3)2

2a2
4

)
sinc (a5∆t+ a6)

]
(2.34)

where ~a are free parameters, and V is the visibility of quantum interference (1.134).
Fitting this curve to the data shown in figure 2.10, we found V = 0.978 ± 0.007,
taking into account the measured rate of accidental coincidences. Here uncertainty
was estimated using a Monte-Carlo technique, assuming Poissonian statistics.

2.5 Randomized benchmarking

Having calibrated each phaseshifter and observed high-visibility quantum interfer-
ence in the CNOT-MZ, we then used a randomized benchmarking technique to to
characterise the operational real-world performance of the device, across the full
parameter space. We cannot expect to test every possible configuration of all eight
phase shifters. Instead, we checked performance for a large number of configura-
tions sampled uniformly at random from the full 8-dimensional parameter space of
the chip. A somewhat similar randomized approach to global characterization of
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Figure 2.11: Randomized benchmarking of the CNOT-MZ. The histogram shows
the distribution of statistical fidelity F (~P , ~P ′) between measured coincidence count-
rates ~C ≈ C0

~P and those predicted by an ideal theoretical model ~P ′, over 995
randomly-chosen phase settings ~φj. 96% of phase settings produced statistics corre-
sponding with theory to F > 0.97. The red line shows the expected distribution for
a device whose output is completely uncorrelated with the desired behaviour, i.e. a
white noise source.

quantum gate operations has been proposed by Knill [32].

We first chose 1000 random vectors ~φj representing possible configurations of the
device

~φj = [φ1,j, φ2,j, ..., φ8,j] ; 0 ≤ φij ≤ 2π. (2.35)

Injecting indistinguishable photon pairs into waveguides w2 and w4, we encoded the
logical qubit state |00〉 at the input of the device. For each configuration ~φj, we
then measured coincidence count rates at the output, postselecting on the 2-qubit
subspace of detection patterns

~Cj = [C00,j, C01,j, C10,j, C11,j] ≈

(∑
i

Cij

)
~Pj. (2.36)

Using an idealized numerical model of the device, assuming unit visibility of quan-
tum interference and perfect fabrication, we then calculated the ideal probability
distribution ~P ′j for each configuration of phases. The experimental setup would ide-
ally exactly reproduce the theoretical prediction, ~P ′j = ~Pj. We characterised the
discrepancy between the performance of the CNOT-MZ and theoretical predictions
using the statistical fidelity F (P, P ′) =

∑
i

√
Pi · P ′i . The measured statistical dis-
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tribution of these fidelities over 995 random configurations 3 is shown in Fig. 2.11.
The average fidelity across all configurations was measured to be 0.990±0.009 with
96% of configurations producing photon statistics with F > 0.97.

This result depends on simultaneous high fidelity quantum and classical interfer-
ence, as well as accurate joint control of all eight phase controllers. Poor performance
of any of these component parts would result in lower fidelity output for some subset
of configurations. The fact that we see good fidelity over many random trials allows
us to progress to more rigorous and sophisticated tests, described in the remainder
of this chapter.

2.6 Quantum state tomography

In order to characterize states generated by the experimental apparatus, we will
often make use of simple witnesses and metrics such as Bell-CHSH, concurrence,
etc. (see, for example, section 1.3.8). However, the most complete information is
encoded in the density matrix ρ̂ of the experimental state itself. We performed
quantum state tomography (QST) on a variety of states generated by the CNOT-
MZ, using on-chip MZIs to implement the requisite measurements and reconstruct
ρ̂. Previous demonstrations of quantum state tomography in integrated photonics
have not used reconfigurable on-chip components to implement the different settings
required for QST. In this analysis we largely follow James et al. [33].

Imagine that we are given a three-dimensional object with some complex shape.
We are interested in completely learning the 3-D geometry of this object. It is
natural to first take a fixed viewpoint, projecting the 3-D structure of the object in
question onto the 2-D retina of the eye. With this information in mind, we then
rotate the object, and make a second projective measurement. Again we rotate, and
project, and rotate and so on, until after some sufficient number of measurements
we can completely reconstruct the object in the abstract 3-D space of the mind’s
eye. Medical imaging techniques such as X-ray computed tomography (CT) and
magnetic resonance imaging (MRI) make use of this method.

An analogous task exists for quantum states. In experiments, we are often pre-
sented with a device or source which generates a quantum state ρ̂ which is partially
or entirely unknown or untrusted. Using QST [29, 33], the full density matrix can
be approximately (and in some cases exactly) reconstructed, by making an appro-
priate set of projective measurements on a number of copies of the state ρ̂. The

3Five measurement outcomes were deemed to be spurious due to detectable experimental error.
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origins of the technique arguably lie with Stokes [34], who described a method to
fully reconstruct the polarization of a beam of light based on simple measurements.

QST, while closely analogous to classical tomography, is distinguished by the fact
that, for quantum systems, measurement necessarily changes the state of the object
under test. Therefore, we cannot always perform consecutive measurements τ̂i on a
single copy of a quantum state ρ̂ and expect to accurately recover the expectation
values 〈τ̂i〉 = Tr[τ̂iρ̂]. This notion is captured in Heisenberg’s uncertainty principle
and is a direct result of the No-Cloning theorem (see section 1.3.4). Since the
observer cannot clone the system without prior knowledge of ρ̂, we usually consider
tomographic situations where a “black box” device repeatedly outputs ρ̂ on-demand,
and consecutive measurements are evaluated on copies of the state generated in this
way.

In this discussion we will consider a system of n qubits, however the analysis
easily extends to higher-dimensional systems [35]. A general n-qubit mixed state
can be written as

ρ̂ =
1

2n

3∑
i1,i2...in=0

Si1,i2...inσ̂i1 ⊗ σ̂i2 ⊗ . . .⊗ σ̂in (2.37)

where σ̂i are the Pauli matrices and {Si1,i2...in} ≡ ~S are the Stokes parameters,
4n real numbers which together completely and uniquely characterise ρ̂. Complete
knowledge of ~S amounts to complete knowledge of the physical state of the system.
Normalization imposes the condition that S0,0...0 = 1, leaving 4n− 1 real parameters
to be estimated.

The set of n-qubit measurement operators {τ̂i} used for QST is referred to as the
quorum. A remarkable property of QST is that regardless of the degree of entan-
glement of ρ̂, there is no need to measure in entangled bases. Although entangled
measurements have advantages for certain tomographic applications [36], experi-
mentally it is often dramatically more convenient to measure in a separable basis.
4n − 1 local measurement operators of the form τ̂i = τ̂i1 ⊗ τ̂i2 ⊗ . . . ⊗ τ̂in therefore
suffice for the reconstruction of any ρ̂, where τ̂ij is a 2× 2 single-qubit measurement
operator on the jth qubit. When examining a classical 3D object, if we always ob-
serve the object from one angle, changing only our distance from the sample, we will
not obtain full information of its shape. Similarly, for complete reconstruction of an
unknown ρ̂ each measurement in the quorum must be linearly independent from all
others, i.e. a given τ̂i cannot be written as a linear sum over the remaining {τ̂i′ 6=i}.
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Experimentally, we measure the expectation values

~T ≡ {Ti}; Ti =
∑
j

λijcij
Ci

Tr (ρ̂ |λij〉〈λij|) ≈ 〈τ̂i〉 = Tr [ρ̂τ̂i] (2.38)

over the quorum {τ̂i}. where {|λij〉, λij} are the eigenstates and eigenvalues of the
experimental measurement measurement operator τ̃ij ≈ τ̂ij, cij is the count-rate
corresponding to detection of |λij〉, and Ci =

∑
j cij is the total number of detection

events for a particular measurement setting. Having obtained ~T , the experimental
density matrix is typically reconstructed using one of two standard approaches:
linear or maximum-likelihood reconstruction.

2.6.1 Linear reconstruction

Consider the choice of quorum

τ̂i = σ̂i1 ⊗ σ̂i2 ⊗ . . .⊗ σ̂in , (2.39)

where σi are the usual Pauli matrices. It is easy to see from (2.37) that for this
quorum, under ideal experimental conditions, ~T = ~S — in which case ρ̂ can be
simply reconstructed by evaluation of the sum in (2.37). The simplicity of this
reconstruction motivates (2.39) as the quorum of choice in many experimental im-
plementations of QST. However, it is not necessary to choose (2.39) and there are
sometimes experimental reasons4 to make a different choice. In particular it is not
necessary for the eigenstates of τ̂i to be orthogonal. In order to accommodate more
general quora in this analysis, we can write the system of simultaneous equations
relating ~T and ~S as ~T = Q~S where Q is a change-of-basis matrix with entries

Qi,j =
1

2n
Tr [τ̂iσ̂j] . (2.40)

This allows ~T — the experimental data — to be converted to ~S by linear inver-
sion of Q, which is guaranteed to be possible because τ̂i and σ̂j are both linearly
independent. Once this is done, reconstruction of ρ̂ is a simple matter of evaluating
(2.37).

4See for example ref. [37], where this problem is addressed for polarization-encoded qubits.
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2.6.2 Maximum likelihood quantum state tomography

Linear reconstruction as described above is attractive because of its simplicity. How-
ever in real experiments, finite statistics, errors in the implementation of τ̂ [37], and
detection errors, for example dark counts (section 1.6.4), all give rise to imperfection
and noise in ~T , resulting in a discrepancy between the true state of the system ρ̂ and
the reconstructed image ρ̂r Importantly, linear reconstruction can yield instances of
ρ̂r which are not physical, i.e. where one or more of the conditions that ρ̂r should
be trace-one, positive-semidefinite, and Hermitian (see section 1.3.6) are not met.

When ρ̂r is not physical, we cannot confidently apply standard measures to
estimate its properties — for example by computing the quantum state fidelity with
respect to an ideal state. As a result, maximum-likelihood quantum state tomography
[33] was developed to guarantee physicality in reconstructed density matrices. This
is accomplished by use of numerical optimization to maximize, over the space of
all physical density matrices, a likelihood function describing the probability that a
particular ρ̂r gave rise to the experimental data. The parametrization of this space
can be achieved using the following form, which is positive-semidefinite Hermitian
and normalized by construction:

ρ̂p
(
~t
)

=
ĝ(~t)ĝ(~t)†

Tr
[
ĝ(~t)ĝ(~t)†

] . (2.41)

where ~t is a vector of 4n real parameters and ĝ is a 2n × 2n complex matrix5.
Rather than maximising the likelihood, we can instead minimize the least-squares
cost function

Γ
(
~t
)

=
∑
i

(
Tr
[
ρ̂p
(
~t
)
τ̂i
]
− Ti

)2

2Tr
[
ρ̂p
(
~t
)
τ̂i
] , (2.42)

with respect to ~t. This minimization thus yields a description of the state, ρ̂p(~tmax),
most likely to have generated the experimental data.

In (2.42) it is sufficient to iterate over a minimal set of 4n − 1 projective mea-
surements. Although this is experimentally the least costly option, it can be advan-
tageous to include an over-complete quorum. Depending on the particulars of the
experiment, we can use an arbitrary number of measurement outcomes, over and
above the minimal set, without any modification of (2.42). This has the advantage
of improved resilience to measurement error and spurious measurement outcomes,
with the result that ρ̂r gives a better approximation to the true state of the system

5There are many ways to parametrize ĝ in terms of ~t. The only condition is that ρ̂p(~t) spans
the entire Hilbert space. See [33] for one example.
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ρ̂ (see [37]).

The numerical optimization task of finding the maximum-likelihood state is un-
surprisingly computationally demanding, working as it must over 4n−1 parameters.
This is compounded by the problem of estimating error bars on quantities computed
from the reconstructed state, which — due to the nonlinear, algorithmic nature of
the reconstruction process — is typically achieved through a Monte-Carlo approach,
requiring on the order of 100 repeated trials of the optimization process. For single-
qubit states this can be achieved in an acceptable time using high-level interfaces
to general-purpose Nelder-Mead simplex algorithms such as fminsearch in Matlab
and scipy.optimize.fmin in Python. However, for larger systems these functions
become unacceptably slow.

It turns out that maximum-likelihood estimation can instead be written as a
semidefinite programme, a particular class of optimization problems dealing with
linear functions of positive semidefinite Hermitian matrices: i.e. density operators.
By exploiting this knowledge along with the fact that the function (2.42) is convex
— it has at most one minimum point — we can solve the optimization problem in
much less time with respect to general-purpose methods.

It should be emphasised that although general-purpose QST can be made tractable
for small systems (on the order of tens of qubits) [38], it is intrinsically exponentially
hard to learn or even represent an unknown n-qubit state. When we come to build
large-scale quantum computers with thousands or millions of physical qubits, it will
not be possible to learn the full state of the system at any point. Various methods
have been developed in order to mitigate this problem, many of which make use of
prior knowledge or reasonable assumptions on the state to make the representation
and tomography efficient. Significant examples include QST by compressed sensing
[39], which provides a logarithmic speedup with respect to full QST by assuming
that the state is relatively pure and therefore sparse in some basis, and matrix prod-
uct state methods [40], which also provide a logarithmic speedup by assuming that
the state is constructed by means of a particular sequence of entangling operations
between small numbers of adjacent qubits. However, it remains to be seen how well
these techniques perform when applied to the diagnosis of imperfection in a real
quantum computer, and scalable validation and verification of quantum states re-
mains a topic of considerable interest and urgency. See section 6.3.5 for a discussion
of these topics outside the qubit encoding.
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Figure 2.12: On-chip quantum state tomography. Density matrices of the Bell
states (a) |Φ+〉, (b) |Φ−〉, (c) |Ψ+〉 and (d) |Ψ−〉, generated and characterized on-
chip. Imaginary parts are not shown.

2.6.3 On-chip quantum state tomography

Throughout this thesis, we make use of QST to characterize the quality of states gen-
erated by the CNOT-MZ. As a first demonstration, we prepared and measured each
of the four canonical Bell states (1.38). These states, being maximally entangled,
provide a particularly rigorous test of the performance of the CNOT-P gate.

Setting appropriate voltages to phaseshifters φ1−4 as described in section 2.2.5,
we prepared the separable superposition states

|+〉C ⊗ |0〉T , |+〉C ⊗ |1〉T , |−〉C ⊗ |0〉T , |−〉C ⊗ |1〉T (2.43)

at the input of the CNOT-P gate. The corresponding Bell states (|Φ±〉 and |Ψ±〉
respectively) are then ideally produced at the output.

For each input state, phase shifters φ5−8 were then used to implement the quorum
of 16 measurement settings required to reconstruct the density operator of the state.
Since we collect statistics for all four logical outputs of the device simultaneously, is
is straightforward to implement an over-complete quorum

τ̂i = |Ci〉〈Ci| ⊗ |Ti〉〈Ti| (2.44)

over all combinations of |Ci〉, |Ti〉 ∈ {|0〉, |1〉, |+〉, |−〉, |+ i〉, | − i〉}. The measured
density matrices of all four Bell states are shown in Fig. 2.12, with quantum state
fidelities [29]

F =

(
Tr
√√

ρthρexp
√
ρth

)2

(2.45)

of 0.947± 0.002, 0.945± 0.002, 0.933± 0.002, and 0.885± 0.002 respectively.

A discussion of sources of error in the CNOT-MZ, to which we attribute the
infidelity seen here, is given in section 2.10.
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2.7 Quantum process tomography

QST allows us to obtain complete information about the output of a black-box
source of quantum states. Often, we are also interested in devices which transform an
arbitrary input state, where we would like to learn the a priori unknown relationship
between input and output states of the device [41].

While many of the errors which arise in LOQC are described by unitary opera-
tors6, in order to completely describe an arbitrary black-box device it is necessary
to account for processes which do not preserve the purity or orthogonality of their
input states. This can occur if the system couples to unknown environmental de-
grees of freedom, which are traced over in the final measurement. Any black box
of this type can be completely and uniquely characterised by a completely positive
map E . This operator describes the effect of the device on an input state ρ̂in,

ρ̂out = E (ρ̂in) =
∑
i

Âiρ̂inÂ
†
i (2.46)

where Âi are a set of operators acting on the Hilbert space of ρ̂. In order to connect
this theoretical description with experiment it is helpful to re-write

Âi =
∑
j

ai,jĀj (2.47)

where Āj are the Kraus operators, which are fixed and independent of E . Āj satisfy
Tr(Ā†jĀk) ∼ δj,k and

∑
j Ā
†
jĀj = I. For qubit systems the Kraus operators are

typically chosen as tensor products of Pauli matrices, Āj = σ̂j0 ⊗ σ̂j1 ⊗ . . . ⊗ σ̂jn .
The quantum operation can then be completely and uniquely characterised by the
process matrix χm,n ≡

∑
i ai,ma

∗
i,n, a matrix of 22n complex numbers with 24n − 22n

free parameters, which relates ρ̂out to ρ̂in as

ρ̂out = E (ρ̂in) =
∑
m,n

χm,nĀmρ̂inĀ
†
n. (2.48)

The task of quantum process tomography (QPT) is then to estimate χ. For an input
state ρ̂in, the probability that the output state of the device is detected in a state
τ̂k is given by

Pjk = Tr
[
τ̂k ρ̂

j
out

]
= Tr

[
τ̂k E

(
ρ̂jin
)]
. (2.49)

6For example, errors in BS reflectivity.
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In order to obtain sufficient information to fully reconstruct E for an arbitrary device,
we follow a procedure which is equivalent to full QST of ρ̂jout, for a complete or over-
complete set of linearly independent ρ̂jin — that is, ρ̂jin should at least form a basis
for the Hilbert space upon which E acts. Experimentally, we measure count rates

njk ≈ Pjk
∑
j

nj = PjkN ; P̃jk ≡
njk
N

(2.50)

for every possible combination over a quorum of at least 4n− 1 input states ρ̂jin and
4n − 1 measurement settings τ̂k.

Having acquired this data, we must then reconstruct χ. Although linear recon-
struction techniques exist, they suffer the same issues as linear QST: namely, exper-
imental imperfection and finite statistics can lead to a reconstructed process matrix
which is unphysical, precluding comparison with standard metrics. As a result, ex-
perimental QPT is usually performed using a maximum-likelihood reconstruction
technique. As with maximum-likelihood QST, we first choose a parametrization
of χ which enforces physicality. Since the process matrix is subject to the same
physical constraints as a density matrix (both are normalized, Hermitian, positive-
semidefinite square matrices), we use a similar parametrization:

E(~t)↔ χ̃
(
~t
)

=
ĝ
(
~t
)
ĝ
(
~t
)†

Tr
[
ĝ
(
~t
)
ĝ
(
~t
)†] . (2.51)

We then minimize the cost function [41], constituting a least-squares difference be-
tween the observed data and that predicted by theory, with respect to ~t:

Γ(~t) =
∑
jk

(
P̃jk − Tr

[
τ̂k E(~tρ̂jin)

])2

2Tr
[
τ̂k E(~tρ̂jin)

] . (2.52)

Fortunately, this problem can be converted into a semidefinite program [37, 42],
allowing the used of convex optimization algorithms which can greatly accelerate
the numerical optimization procedure.

2.7.1 On-chip quantum process tomography

We used the state preparation and measurement stages of the CNOT-MZ to perform
full QPT of the CNOT-P gate. This test completely and uniquely characterizes the
CNOT-P gate itself, providing full information on the quality of our implementa-
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Figure 2.13: Quantum process tomography of a maximally entangling gate. (a)
Ideal and experimental output states of the CNOT-P gate, for a complete set of
linearly independent input states. (b) Ideal process matrix of the CNOT gate. The
imaginary part is zero everywhere. (c) Real and (d) imaginary parts of the measured
process matrix of the CNOT-P device, after a local rotation to permit comparison
with the canonical CNOT gate.

tion. In addition, the QPT protocol places stringent demands on the performance
of the reconfigurable components of the chip: even if the CNOT-P were perfect,
errors in state preparation and measurement would lead to recovery of a flawed pro-
cess matrix. Moreover, QPT of a 2-qubit gate requires 256 measurements, and is
particularly demanding in terms of repeatability and stability of the experimental
setup.

Setting appropriate voltages to phase shifters φ1−4 as described in section 2.2.5,
we prepared 16 separable, linearly independent input states

ρjin = |Ψj〉〈Ψj| ; |Ψj〉 = |Cj〉 ⊗ |Tj〉 ; |ψ〉 ∈ {|0〉, |1〉, |+〉, |+ i〉| − i〉}. (2.53)

For each ρjin, the output state of the CNOT-P gate was measured and reconstructed
by QST as before, using phase shifters φ5−8 to perform each of the 16 measurements.
These density matrices are shown together with ideal states in figure 2.13(a).
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Figure 2.14: CHSH manifold. (a) The Bell-CHSH sum S, plotted as a function of
phases α and β. In the α axis, the state shared between Alice and Bob is tuned
continuously between product states at α = 0, π and maximally entangled states at
α = π/2, 3π/2. The β axis shows S as a function of Bob’s variable measurements,
which can be thought of as two operator-axes in the real plane of the Bloch sphere,
fixed with respect to each other at an angle of π/2 but otherwise free to rotate
with angle β between 0 and 2π. The blue curves show a projection of the manifold
onto each axis. Yellow contours mark the edges of regions of the manifold which
violate −2 ≤ S ≤ 2. Red lines on the axes also show this limit. (b) Experimentally
measured manifold. Data points are drawn as black circles. Data points which
violate the CHSH inequality are drawn as yellow circles. The surface shows a fit to
the experimental data.

The process matrix χ was then reconstructed according to the maximum likeli-
hood technique previously described. The experimentally measured process matrix
is shown together with the theoretical ideal matrix χideal in figures 2.13(b-d). For
clarity, the experimental matrix has been rotated through a local two-qubit unitary
which maps CNOT-P to CNOT (see section 2.2.4). The process fidelity [29]

FP = Tr(χidealχexp) (2.54)

between the reconstructed process and the ideal CNOT operation was found to
be 0.841± 0.002. This is comparable with the process fidelity of 0.87 previously
measured using an equivalent bulk-optical circuit [27]. The average fidelity [43],
defined as the state fidelity between actual and ideal output states averaged over all
possible input states, is 0.873±0.001. Here error was determined by a Monte-Carlo
approach, assuming Poissonian photon statistics. Sources of error contributing to
this sub-unit process fidelity are discussed in section 2.10.
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2.8 Bell inequality manifold

Having shown that the CNOT-MZ can prepare maximally entangled states, we
now demonstrate that these states are nonlocal. As previously discussed, the Bell-
CHSH test (section 1.3.8) provides a particularly rigorous criterion for a source of
entanglement. In particular, only a subset of the most strongly entangled states can
generate nonlocal statistics in a CHSH test. As such, CHSH is important not only
as a fundamental test of foundational quantum theory, but also as a measure of the
operational performance of quantum technologies and devices.

In the context of the CNOT-MZ, all local realistic models demand that

|S| = |〈Ĉ1T̂1〉+ 〈Ĉ1T̂2〉+ 〈Ĉ2T̂1〉 − 〈Ĉ2T̂2〉| ≤ 2 (2.55)

where Ĉi, T̂j are measurement operators on the control and target qubits respec-
tively. If these qubits are entangled, this inequality can be violated up to a maximum
value of |S| = 2

√
2 — in which case we say that we detect nonlocal statistics, or

that we “obtain nonlocality”.

In order to further test the reconfigurability of the CNOT-MZ, we measured S
over a range of partially entangled states, using a variety of measurement settings.
Even if the state |Ψ(φ1−4)〉 generated by the CNOT-P is maximally entangled, (2.55)
is only violated for a subset of measurement settings. See section 4.2 for further
discussion of this point.

We used φ1−4, together with the CNOT-P gate, to prepare the state

|ψout〉 =
1

2
√

2

[(
1− eiα

)
|00〉+

(
1 + eiα

)
|11〉

]
, (2.56)

where α = φ1 tunes continuously between two orthogonal states: for α = 0, π, |ψout〉
is a product state, and with α = π/2, 3π/2, |ψout〉 is the maximally entangled state

1√
2

(|00〉 ± i|11〉) (up to a global phase). Scanning α in the interval [0, 2π], we pass
through a continuum of partially entangled states. In order to evaluate S, we used
phaseshifters φ5−8 to implement four two-qubit measurements on the state emerging
from the CNOT-P gate. While Alice’s measurement settings (φ6 ∈ {π/4,−π/4})
were fixed, Bob’s measurement operators were continuously rotated in the real plane
of the Bloch sphere, with φ8 ∈ {β, β+π/2}. We measured S(α, β) for α ∈ [0, 2π] and
β ∈ [0, 2π], with step size 2π/15, producing the “Bell manifold” shown in figure 2.14.
We measured maximum and minimum values of S of 2.49± 0.03 and −2.54± 0.03

respectively. Errors were again determined by a Monte-Carlo technique, assuming
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Poissonian statistics.

In order to quantitatively compare the theoretical manifold with experimental
data, we used the quantity

R2 = 1−
∑

i(Si − Ti)2∑
i(Si − S̄)2

, (2.57)

where Si are experimentally measured values of the Bell-CHSH sum, S̄ is the average
over Si, and Ti are the theoretical values of S shown in Fig. 2.14a. In the ideal case,
R2 = 1. For the data shown in figure 2.14b, R2 = 0.935.

2.9 Generating and characterising mixture

Mixture, introduced in section 1.3.6, is a basic property of quantum mechanical
states, equivalent to classical randomness. The effect of decoherence, which is the
major source of errors in many proposed architectures for quantum computing,
is to introduce mixture to the computer’s state, and the study and modelling of
mixed states will be important in future studies of decoherence mechanisms. Despite
this broad association of mixture with error, mixed states can actually be used for
universal quantum computing [44], and are believed to play an important role in
biological processes [45, 46] including photosynthesis.

One approach to generating mixed states is to build a source which randomly
samples from an ensemble of pure states: for example, to generate the maximally-
mixed single-qubit state 1/2, we can use a source which generates each of the logical
basis states with equal probability

ρ̂ =
∑
i

pi|i〉〈i| =
1

2
|0〉〈0|+ 1

2
|1〉〈1| = 1/2. (2.58)

Note that in this approach, it is important that the random sampling technique,
which chooses between |0〉 and |1〉, must not “leak” information to the observer —
otherwise the state can be written in a pure form:

|0t11t21t30t40t51t6 . . .〉 (2.59)

An alternative approach7 begins with a maximally entangled, pure, two-qubit state,

7Note: these two forms of mixture are sometimes distinguished as improper (using entangled
states) and proper (using a random number generator). However, they are formally indistinguish-
able [47].
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and traces over one qubit:

ρ̂A = TrB

[
1√
2

(|0A0B〉+ |1A1B〉)
]

=
1

2
|0〉〈0|+ 1

2
|1〉〈1| = 1/2. (2.60)

The CNOT-MZ can prepare an arbitrary two-qubit state (section 2.2.7), and by
tracing over one qubit can thus prepare arbitrary single-qubit mixed states. Starting
from the parametrization (2.25) of an arbitrary two qubit state, and tracing over
the target qubit

|ΨCT 〉 =
√
λ |λC〉 ⊗ |λT 〉+

√
1− λ |λ⊥C〉 ⊗ |λ⊥T 〉 (2.61)

trace−−→ ρ̂C = TrT (|Ψ〉〈Ψ|) = λ|λC〉〈λC |+ (1− λ)|λ⊥C〉〈λ⊥C | (2.62)

Since |λC〉 is an arbitrary single-qubit pure state, ρ̂C is an arbitrary mixed state.
Note that there is a one-to-one correspondence between the degree of entanglement
of the initial two-qubit state and the purity of the reduced density matrix, dictated
by the choice of λ.

What does it mean to “trace over the target qubit” in the context of the CNOT-
MZ? Ideally, we would measure the control qubit independent of the target qubit,
which in principle need not be measured at all. However, since the CNOT-P is
a nondeterministic gate, we must count in the coincidence basis to postselect on
successful gate operation. Therefore, in practice we count coincidences across both
qubits and then combine two-photon count-rates to generate effective single-qubit
data, independent of the measurement outcome on the target:

c̃0C = c0C0T + c0C1T ; c̃1C = c1C0T + c1C1T . (2.63)

We chose 119 single-qubit mixed states of varying purity, at random by the
Hilbert-Schmidt measure [48], which samples uniformly from the full volume of
the Bloch sphere. For each mixed state, we generated an appropriate two-qubit
pure state, traced out the target qubit, and performed full single-qubit QST on the
control, reconstructing the reduced density matrix based on c̃0C , c̃1C . Figure 2.15
shows the distribution of quantum state fidelity (2.45) between reconstructed states
and their corresponding ideal mixed states. The average fidelity across all 119 states
was found to be 0.98 ± 0.02, with 91% of states having fidelity > 0.95. We then
chose 63 specific mixed states that mapped out the symbol ‘Ψ’ inside the Bloch
sphere, and generated them with high fidelity (figure 2.15, inset). This picture
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Figure 2.15: Histogram showing the statistical distribution of quantum state fidelity
between 119 randomly chosen single-qubit target states and the corresponding mixed
states generated and characterized on-chip. Inset: Ψ drawn in the Bloch sphere using
63 mixed states, again generated and characterized on-chip. These states are chosen
from the real plane of the sphere for clarity. The point at the centre of the sphere is
maximally mixed, and was traced out from a two-qubit maximally entangled state.
Points on the surface of the sphere are pure, and were traced out from separable
states.

gives a visual impression of the typical fidelity with which mixed states (and, by
implication, entangled states) can be prepared and measured using the CNOT-MZ.

2.9.1 Errors in the CNOT-MZ

The imperfect performance of the CNOT-MZ seen in the previous experiments can
be attributed to a number of different sources of error. First, we do not achieve per-
fect HOM interference, due to residual distinguishability of the photon pair — this is
likely due to small polarization rotations, temporal distinguishability, and imperfect
mode-matching at the DCs. A larger fraction of error is due to imperfect calibra-
tion and operation of the thermal phaseshifters, which contributes significantly to
imperfection in reconstructed states and processes. Figure 2.16 shows the effect of
inaccuracy in the control of phases in the CNOT-MZ: the fidelity of states recon-
structed by QST is reduced by ∼ 4% given 0.05 rad of variance at each phaseshifter.
We expect that imperfect fabrication of passive waveguide structures in the CNOT-
MZ, which leads to time-invariant unitary errors and is reflected in the results of
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Figure 2.16: Errors in the CNOT-MZ. Solid lines show a numerical simulation,
plotting quantum state fidelity of states reconstructed by maximum-likelihood QST
against the visibility of HOM interference. The grey line assumes perfect phase-
shifters and infinite statistics, while the black line models the effect of 0.05 rad
variance in phase on each phaseshifter, as well as the effects of finite statistics for
a realistic experimental count-rate. The red line shows the experimentally mea-
sured visibility of HOM interference, and red crosses show measured quantum state
fidelities of the four Bell states.

section 2.7.1, accounts for the remaining discrepancy between our experiment and
the ideal performance of the device.

2.10 Discussion

In this chapter, we have not shown any new ability to manipulate quantum states
which could not be duplicated in practice using bulk optics. The CNOT-P gate
[24], experimental state and process tomography [27], and mixed-state preparation
have all previously been shown in bulk. The main result of work presented in
this chapter is instead to show that the complexity and flexibility of bulk optics
for quantum information can be reproduced to equivalent or better fidelity in a
waveguide chip. This represents a significant step forward with respect to previous
experiments in integrated quantum photonics, where devices were either completely
passive [7, 9, 10, 12, 28] or insufficiently complex/reconfigurable to perform multiple
distinct tasks [7, 11].

A side-effect of photonic integration is the ease with which the circuit can be fully
automated, enabling experiments which depend on a large number of measurements
(chapters 3 and 4), or feedback and optimization over a large number of experimental
parameters (chapter 5). Automation to this extent can be experimentally demanding
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or expensive in bulk-optics.
There remains considerable scope for improvement of the experimental setup

and device fabrication. First, the silica-on-silicon material system used here is in-
trinsically limited by the available refractive index contrast, which leads to relatively
large devices. A competitive quantum information processor built in silica-on-silicon
would likely be prohibitively large. Recently, there has been great progress in in-
tegrated quantum optics using material systems which allow for a much higher
component density: in particular, silicon nanowire waveguides [49–55], can provide
up to six orders of magnitude decrease in component size.

As discussed in section 2.9.1, inaccuracy in phaseshifter calibration is significantly
detrimental to the performance of the device. Recently, Li et al. [31] have shown a
new method for calibration of the CNOT-MZ, using a Bayesian learning method to
automatically find the optimal calibration settings. The authors report significant
improvements in the performance of the device, with respect to those reported here.

To summarize, we have shown an integrated quantum photonic chip with a con-
siderably greater degree of reconfigurability than previous devices. We have demon-
strated the ability of this chip to generate arbitrary two-qubit entangled states and
single-qubit mixed states. We have confirmed the entangling capability of the de-
vice through violation of a Bell inequality across a large fraction of the parameter
space. Finally, we have completely characterised the quantum process implemented
by the CNOT-P gate by QPT. To our knowledge, in the field of integrated quantum
photonics, this work constitutes the first demonstration of quantum state and pro-
cess tomography where state preparation and measurement were both implemented
on-chip, as well as the first on-chip Bell violation. The general-purpose utility of the
CNOT-MZ is borne out in the following chapters.

Statement of work

I optimized the photon source, and found and optimized the Hong-Ou-Mandel dip.
I built, optimized and programmed a large fraction of the supporting electronics.
I calibrated the resistive heaters, and designed and optimized the pulse sequence
described in section 2.3.2. I measured all of the experimental data, and performed all
of the simulations shown in this section. I conceived the randomized characterization
protocol.
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Any other situation in quantum mechanics, it turns out, can be
explained afterwards by saying, “you remember the case of the
experiment with the two holes? It’s the same thing.”

Feynman

Chapter 3

A Quantum Delayed-Choice Exper-

iment

3.1 Introduction

This chapter concerns the fundamental concept of wave-particle duality. We begin
with an introduction to the topic, and an overview of key results from the liter-
ature. We then demonstrate a variation on Wheeler’s celebrated delayed-choice
experiment, in which the choice of the classical observer is replaced by the state
of an ancillary quantum system. This allows two mutually exclusive measurement
settings to be simultaneously entertained in coherent superposition, giving rise to
continuous morphing between wave-like and particle-like behaviour. Our experimen-
tal results support the understanding that the photon is neither particle nor wave,
and that it does not “choose in advance” to behave as one or the other.

In this discussion I have attempted to follow closely the approach of Richard
Feynman [1], and I draw on some insight due to David Z. Albert [2].

3.2 Young’s double slit

Young’s double slit is a thought experiment to do with waves and particles. By
means of a simple apparatus, it reveals the one true mystery of quantum mechanics.
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(a) (b)

i ii

Figure 3.1: Wave-particle duality. (a) Young’s double slit experiment. Single
quanta, for instance electrons or photons, are sent one-by-one towards a mask into
which two holes (A, B) have been cut. On the far side of the shield the wavefunction
of the particle interferes with itself, giving rise to a complex interference pattern in
the distribution of detection events at an imaging screen. Wave interference drawing
taken from T. Young, Course of Lectures on Natural Philosophy and the Mechanical
Arts, 1807. (b) Similar interference effects are seen in the Mach-Zehnder interfer-
ometer. The intensity of light and the probability of detection, in either detector
varies as a sinusoidal function of the path length difference ϕ in the interferometer.

Young’s double slit is a “triangle” (section 1.3), in the sense that it is a contrived
experiment whose results cannot be elegantly explained by classical laws. Attempts
are often made to shoehorn this experiment into a classical framework, but none
achieve the elegance and generality of the quantum mechanical formalism. In the
course of this discussion, we will see that quantum systems are neither particles
nor waves, and that they are neither here, nor there, nor in two places at once, nor
nowhere at all! Thus Young’s double slit exposes in a very simple way the inadequacy
of our everyday classical language when dealing with quantum phenomena.

Consider a machine gun, pointed at a mask in which two holes (A,B) have been
made. The holes can be opened or closed at will. The gun sprays bullets across
some solid angle, and from time to time a bullet will go through one or other of the
holes. At a screen on the far side of the mask, a bullet detector registers the arrival
of the bullet and its position on the x-axis (figure 3.1(a)). Bullets are corpuscular,
indistinguishable particles, which for the purpose of this discussion are assumed to
be indestructible and pass through one hole only, never both at the same time. The
number of bullets arriving at the detector in a single shot is either zero or one —
simultaneous detection of two bullets never occurs.

Having fired many times and detected N bullets, we can estimate the probability
of detection at a particular point on the x-axis as pAB(x) = nAB(x)/N , where n(x)

is the total number of bullets detected at position x, and the subscript AB denotes
the case where both holes are open. The full probability distribution over x consists
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of two overlapping lobes, corresponding to photons passing through holes A and B
respectively (figure 3.1(a), curve (ii)). If we block hole A we observe a single-lobed
distribution pB(x) corresponding to photons passing through hole B only, and vice-
versa. The probability distribution observed when both holes are open is equal the
sum of the single-hole distributions, pAB = pA + pB. This is a direct implication of
the fact that bullets, being solid and lumpy, do not interfere with themselves.

Now we replace the machine gun with a source of waves. Perhaps stones are
thrown into a lake at an appropriate distance, such that sinusoidal plane waves are
incident upon the mask. These waves pass through the holes A and B, and finally
arrive at a detection screen at the far side. The depth d(t) of the water rises and falls
continuously in peaks and troughs, and is not discrete or countable. The detection
screen is sensitive only to the average disturbance, energy dissipation at a point, or
intensity, a continuous variable IAB(x) ∝

∫
d(x, t)2dt at position x on the screen.

If we perform this experiment using water, or light, or any other kind of wave,
we see a complex distribution of intensity as shown in figure 3.1(a), curve (i). Part
of this complexity is due to wave interference. A single wavefront from the source
passes through both holes at once, giving rise to wave components originating from
each of the two holes, whose peaks arrive at a given point on the screen with differing
phase by virtue of the geometrical difference in path length. Two peaks together give
a large intensity, while a peak and a trough cancel out. The function describing IAB
is thus composed of a sinc term, corresponding to diffraction through a single hole,
and a sinusoidal term due to wave interference between the two holes. If we block
hole B, IA(x) reduces to a sinc function only, and all interference effects disappear.
As a result, IAB 6= IA + IB, in strong contrast with bullets.

What happens if we repeat this experiment using a source of quantum parti-
cles? Here we will discuss photons, but essentially identical results are observed
for electrons, atoms, and even large molecules such as C60 (buckminsterfullerene)
[3]. We take a source which, upon pressing a button, generates a single photon —
the Fock state |1〉 = a†|0〉. A single-photon detector (see section 1.6.4) is arranged
at a position x on the far side of the mask, in the plane of the screen. A photon
is sent towards the holes, and with some probability pAB(x) the detector will click,
generating an electrical pulse. This output is binary — either the detector clicks, ab-
sorbing ~ω of energy, or it does not. Using a true single-photon (Fock-state) source,
simultaneous detection of a photon at two separate detectors is never observed (see
section 1.5.2). In this sense, photons behave very much like particles. They arrive
at the detector as corpuscular, indivisible lumps, and it is natural to think that they
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might also travel as such, physically passing through one hole or the other.
Having fired many photons and registered N detection events, as with bullets,

we begin to saturate the probability distribution pAB(x) = nAB(x)/N . If photons
are entirely particle-like, we expect to see two lobes, as in curve (ii). Instead, we
measure probability distributions with the exact form of curve (i)! If we block
one or other of the holes, we recover single-lobed sinc-like probability distributions,
as with water waves. Thus the photonic probability distribution does not obey
pAB = pA + pB, and can only be described in terms of wave interference between
components arising simultaneously from holes A and B. Now we encounter a serious
philosophical problem.

It is natural to ask: where was the photon when it passed through the holes?
Did it travel through a single hole, as a particle, or both, as a wave? If we take two
detectors and place them inside holes A and B, we only ever detect the photon at one
hole or the other, never registering a detection event in both holes simultaneously.
This must be true for energy to be conserved. Now,

• If the photon passed through one hole only, and did not pass through the
other, we cannot explain the wave interference effects observed.

• If the photon passed through both holes simultaneously, as if it were a wave,
then it stands to reason that we could detect it at both holes simultaneously,
which never occurs.

• If the photon does not pass through either hole, then we would never detect
it at all — but we do.

So, the photon does not pass through hole A nor hole B alone, and it does not pass
through both holes simultaneously, and it does not pass through neither hole —
but it nevertheless arrives at the screen! In this experiment, the photon exhibits
wave-particle duality, seemingly travelling and arriving as a lump, as if it were a
particle, but simultaneously exhibiting wave interference — phenomena which are
classically mutually exclusive. Contained in this experiment is the full mystery of
quantum mechanics.

An optical implementation of Young’s double slit experiment was performed in
1909 by Sir Geoffrey Taylor, who used a gas flame together with smoked glass1 to
generate “feeble light”, and observed interference fringes in the shadow cast by a

1The intensity of light in Taylor’s experiment was roughly equivalent to a candle burning at a
distance of one mile. J. J. Thompson’s expectation, which turned out to be incorrect, was that
the diffraction pattern should be modified in the limit of very low light levels, as the corpuscular
nature of the photon appeared.
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sewing needle [4]. In 1961, the experiment was first performed using electrons [5].
More recent experimental results include double-slit interference of Buckminster-
fullerene [3], and an electron interference experiment using micromachined slits [6]
which could be opened and closed at will.

3.2.1 Wave-particle duality in the MZI

Throughout the rest of this chapter, it will be convenient to modify the experimental
arrangement somewhat with respect to Feynman’s original proposal. Figure 3.1(b)
shows a Mach-Zehnder interferometer (MZI, section 1.5.4), which exhibits all of
the essential behaviour of Young’s double slit, but is somewhat easier to analyse.
Single photons are sent into one input port of BS1, pass through the two paths
of the interferometer and interfere with themselves at BS2. The two arms of the
interferometer have a path length difference ϕ. BS1 assumes the role of the shield
and holes, and BS2 provides an interface at which the two beams may interfere, in a
similar role to the screen. Two detectors, D0 and D1, record single-photon detection
events at each output port of BS2. The probability of detecting a photon at a given
detector is a sinusoidal function of ϕ:

p(D0) = cos2
(ϕ

2

)
; p(D1) = sin2

(ϕ
2

)
. (3.1)

In this interference pattern we clearly see the wavelike properties of the photon.
In the double-slit scenario discussed previously, the screen is deliberately placed

at a considerable distance from the shield such that diffraction patterns from the
two slits overlap at the screen. Detection of a photon at a point x therefore does not
yield any information about which path (hole) was taken. It is easy to see that if the
screen is placed in the near-field, without any overlap, full which-way information
is obtained upon detection — but no interference (wave-like) effects are seen. An
analogous choice of measurement setting can be performed in the MZI. When BS2

is removed from the interferometer, every detection event tells the observer whether
the photon took the upper or lower path — full which-way information — but
the interference pattern necessarily cannot be observed. In this case the detection
probabilities no longer depend on ϕ:

p(D0) =
1

2
; p(D1) =

1

2
(3.2)

If we define this mode of operation as fully particle-like behaviour, then we can
view the removal of BS2 as switching from wave-like to particle-like measurement
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apparatus, where each configuration reveals a complementary aspect of the photon.

3.2.2 Complementarity

Niels Bohr’s complementarity is the fundamental physical principle at the heart of
the Copenhagen interpretation of quantum theory, and enforces limitations on the
interface between quantum systems and the classical data available to an experimen-
talist. It states that in order to observe complementary properties of a quantum
system, an experimentalist must necessarily employ mutually incompatible arrange-
ments of the measurement apparatus. Complementarity was characterized by Bohr
as follows:

“. . . it is only the mutual exclusion of any two experimental procedures,
permitting the unambiguous definition of complementary physical quan-
tities, which provides room for new physical laws” [7]

In Young’s double slit, as we have already seen, we can arrange the apparatus so as
to measure particle-like behaviour of the photon, watching it take one path or the
other. However, in order to see wavelike interference effects from which the phase
ϕ can be inferred, we must adopt an experimentally incompatible measurement
setup, obscuring all which-way information. That we cannot use both measurement
setups at once is not merely a consequence of inadequate apparatus, or lack of
imagination on behalf of the experimentalist. It is simply a consequence of the
fact that experimental data is by definition classical — pencil marks on a piece
of paper, or magnetic domains on a hard disk — and cannot therefore exist in
quantum superposition. Thus, as was emphasized by Bohr, a single configuration of
any given measurement apparatus may only reveal part of the quantum mechanical
phenomenon. Only by use of multiple configurations or instances of the classical
measurement apparatus is the fullness of wave-particle duality, or any other quantum
effect, revealed.

Bohr’s principle has only very recently been successfully quantified in universal
complementarity relations, such as those due to Ozawa and Hall [8, 9]. It was shown
that if two incompatible observables Â and B̂, [Â, B̂] 6= 0 are approximated by
Âest and B̂est, [Âest, B̂est] = 0, then the rms error ε(Ĝest) ≡ 〈(Ĝest − Ĝ)2〉1/2 in
measurements of these observables must satisfy

ε(Âest)ε(B̂est) + ε(Âest)∆B̂ + ∆Âε(B̂est) ≥
c

2
(3.3)
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(a) (b)

CH
RNG

Figure 3.2: (a) Wheeler’s delayed choice experiment. A photon is sent into a
Mach-Zehnder interferometer. Upon arrival at the first beamsplitter BS1, it is
split into quantum superposition across both paths. A space-like separated random
number generator (RNG) then toggles a fast optical switch, closing or opening the
interferometer by insertion or removal of BS2, leading to wave-like or particle-like
measurement of the photon respectively. Two detectors, D0 and D1, reveal wave-
like behaviour in the event that the interferometer is closed, otherwise particle-like
statistics are seen. (b) Quantum delayed choice. The optical switch is replaced by a
quantum-controlled beamsplitter: a controlled-Hadamard gate. An ancilla photon
controls this gate: ancilla states |0〉 and |1〉 lead to presence and absence of BS2

respectively. By preparing the ancilla in a superposition state, BS2 is effectively
placed into a superposition of present and absent, leading to a superposition of
wave-like and particle-like measurement.

where ε(Ĝest) ≡ (〈Ĝ2〉 − 〈Ĝ〉2)1/2 is the spread in the quantity G. This formalizes
the notion that although the inaccuracy in either observable can individually be
made arbitrarily small, one cannot simultaneously measure both to an arbitrary
degree of accuracy. This relation was recently experimentally tested by Weston et al.
[10] under conditions in which previously discovered, non-universal complementarity
relations fail.

Complementarity lies at the heart of the Copenhagen interpretation of quantum
mechanics. In contrast with de Broglie-Bohm carrier-wave theory [11] (in which the
photon has a literal particle-like trajectory even when unobserved) and the many-
worlds interpretation due to Everett [12] (in which wavefunction collapse does not
occur at all), complementarity states that the photon is neither particle-like nor
wavelike until it is measured, at which point the wavefunction collapses in accordance
with the choice of measurement apparatus.
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3.3 Wheeler’s delayed choice experiment

Upon first encountering Young’s double slit experiment, many physicists are dis-
turbed by its implications. This discomfort does not typically reduce as a function
of time — with greater understanding it should increase! It is nonetheless natural
to attempt to find comfort in a classical understanding of the experiment, where
meaningful comparison can be drawn between the behaviour of the photon and that
of everyday objects in the macroscopic world.

One such classical explanation is very simple to imagine, if somewhat extravagant
in conception. Let us allow that the photon is sentient, or is otherwise able to
examine and assess the experimental apparatus prior to measurement. If the photon
determines that the measurement device is arranged so as to reveal particle-like
behaviour — that is, BS2 is removed from the interferometer — then before it
reaches BS1, the decision is made to become fully particle-like, throwing away all
wave-like properties. Upon arrival at BS1 the photon chooses one path or the other,
exactly as though it were a particle. It then propagates through the apparatus with
impunity, ultimately reproducing exact particle-like statistics: p(D0) = p(D1) =

1/2. If BS2 is instead present, corresponding to a wave-like measurement, the
photon decides in advance to adopt a fully wave-like nature. Wave interference is
then observed at the detectors, from whose output the phase ϕ may be inferred,
without any need for the photon to choose a particular path upon arrival at BS1.

Complementarity and the necessity of incompatible measurement devices make
it difficult to distinguish this pseudo-classical hidden-variable model from the quan-
tum mechanical reality. A particularly elegant approach, which makes life very hard
for the sentient photon, was proposed by John Wheeler in 1978 [13, 14]. The trick
in Wheeler’s delayed-choice experiment, shown in figure 3.2(a), is to postpone the
choice of measurement apparatus until such time as the photon is inside the interfer-
ometer. Once the photon has passed BS1, a fast classical switch is used to remove
or insert BS2 at will. Now, upon arrival at BS1, the photon must choose to behave
as particle or wave without prior knowledge of the measurement apparatus. Hence,
if it is true that the photon adopts the pathological classical behaviour described
above, we expect to see a deviation from the quantum predictions.

Delayed-choice experiments have been performed in a variety of physical systems
[15–19], all of which confirm the quantum predictions. Of particular significance is a
recent result [19] of Jacques et al., in which relativistic space-like separation between
the random choice of measurement setting and the entry point of the interferome-
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ter (BS1) was achieved for the first time. Here, a nitrogen vacancy colour centre
in diamond was used as the source of single photons, ensuring extremely close ap-
proximation to the Fock state |1〉. An electro-optic phaseshifter, controlled by a
quantum random number generator at 4.2MHz, was used to implement the choice
of measurement setting.

3.4 Quantum Delayed Choice

In delayed-choice experiments, the choice of the observer is generally implemented
using a classical optical switch, fast enough to effectively insert or remove BS2

while the photon is still in flight. This classical-controlled beamsplitter is driven by
a single bit from a random number generator, or the free and independent choice of
the experimentalist. The main distinguishing feature in our work is that the classical
random bit is replaced by an ancilla qubit |ψ〉a, which drives a quantum-controlled
beamsplitter, as shown in figure 3.2(b). This configuration was first proposed in a
theoretical work due to Radu Ionicioiu and Daniel Terno [20],

It is helpful in this analysis to note that Wheeler’s interferometer and photon
together form a path-encoded qubit (see section 1.6.1), where the |1〉s and |0〉s
states correspond to a photon in the upper and lower arms of the interferometer
respectively. In our experiment the ancilla qubit is also path-encoded, and is im-
plemented using a second photon. We will refer to these as the system and ancilla
photon/qubit/interferometer respectively.

Upon arrival at BS1, the system photon splits into a coherent superposition over
the upper and lower spatial modes of Wheeler’s interferometer,

|ψ〉s = ˆBS1|0〉s =
1√
2

(|0〉s + |1〉s) , (3.4)

and is then phase-shifted due to the path-length difference ϕ

|ψ〉s
ϕ−→ |ψparticle〉s =

1√
2

(
|0〉s + eiϕ|1〉s

)
. (3.5)

If the ancilla qubit is prepared in the state |0〉a, the quantum-controlled beamsplitter
does not act, and BS2 is effectively absent. The interferometer is thus left open, and
the final state of the system is simply given by (3.5). In this case, the probability of
detecting the system photon in either detector is p(D0) = p(D1) = |〈0|ψ〉s|2 = 1/2.
Every detection event yields full which-way information, and no wave interference
is observed.
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If the ancilla is instead prepared in |1〉 the quantum-controlled beamsplitter
always acts on the system qubit, closing the interferometer. This gives rise to wave
interference such that

|ψ〉s
BS2−−→ |ψwave〉s = cos

ϕ

2
|0〉s + sin

ϕ

2
|1〉s. (3.6)

The probability that the system photon is detected atD0 is now a sinusoidal function
of the phase, p(D0) = cos2

(
ϕ
2

)
, and p(D1) = sin2

(
ϕ
2

)
. Formally, the quantum-

controlled beamsplitter is then equivalent to the controlled-Hadamard operation
CH— a maximally-entangling two-qubit gate — acting on the system qubit, with
the ancilla as the control:

UCH = |0a0s〉〈0a0s|+ |0a1s〉〈0a1s|+ |1a+s〉〈1a0s|+ |1a−s〉〈1a1s|

=


1 0 0 0

0 1 0 0

0 0 1√
2

1√
2

0 0 1√
2
−1√

2

 . (3.7)

When the ancilla qubit is prepared in a generalized superposition state

|ψ〉a = cos(α)|0〉a + sinα|1〉a, (3.8)

the second beamsplitter BS2 is effectively placed in a coherent superposition of
present and absent. The global state of the two qubits then evolves to

|Ψf (α, ϕ)〉 = cosα |0〉a ⊗ |ψparticle(ϕ)〉s
+ sinα |1〉a ⊗ |ψwave(ϕ)〉s

(3.9)

which is entangled for 0 < α < π/2 — maximally so for α = π/4 and φ = π/2. The
detection probability at D0 is given by

p(D0)(ϕ, α) = p(D0)particle cos2 α + p(D1)wave sin2 α

=
1

2
cos2 α + cos2(

ϕ

2
) sin2 α (3.10)

and p(D1) = 1 − p(D0). Hence, in contrast with traditional implementations of
Wheeler’s delayed choice experiment, we are able to tune coherently and continu-
ously between particle-like (α = 0) and wave-like (α = π) statistics.

An important distinguishing feature of the quantum delayed-choice setup con-
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Figure 3.3: The CNOT-MZ provides all the necessary hardware and a suffi-
cient degree of reconfigurability to implement a quantum delayed-choice experiment.
Wheeler’s interferometer is mapped to the target qubit of the CNOT-MZ, with dc2

and φ2 in the roles of BS1 and the internal phase shift ϕ respectively. The ancilla
qubit is prepared using dc1 and dc3 together with phase shifter φ1. The quantum-
controlled beamsplitter is constructed from the linear optical CZ gate — three
directional couplers (dc6, dc7 and dc8) with coupling ratio 1/3 — and single-qubit
W gates implemented using dc4, dc5, dc9, and dc11 together with φ4 and φ6. For
certain values of α and ϕ, the output state of the CH gate is entangled. By measur-
ing each qubit in a particular set of measurement bases controlled using UAlice and
UBob, we are able to violate a Bell inequality on |Ψf〉as, thus ruling out local hidden
variable models in which the photon decides in advance to behave as a particle or
wave.

cerns the ordering of events. Note that since the dynamic classical switch of Wheeler’s
traditional experiment is replaced by a static controlled-unitary operation, there is
no longer any “delayed choice” in this delayed-choice experiment, and there is no
need for fast switching. If the ancilla is (for example) prepared in an equal su-
perposition, it travels balistically through the device without any explicit choice of
measurement setting ever being made. Before either photon is detected, the choice
of measurement setting remains in coherent superposition, encoded in the entangled
state of system and ancilla. Only when the ancilla is detected does the wavefunction
collapse to one or other measurement setting. As a result, the specific timing of the
choice measurement setting is inconsequential, and can even be performed after the
system photon has been detected.

3.4.1 Experimental setup

As we have already noted, the quantum delayed-choice arrangement of [20] can
be seen as a system of two path-encoded qubits, where the quantum-controlled
beamsplitter is implemented by a CH gate. It turns out that the CNOT-MZ device
described in chapter 2 provides all the necessary hardware and a sufficient degree of
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(a) (b)

Figure 3.4: Continuous morphing between wave-like and particle-like behaviour of
the system photon, as a function of the state of the ancilla qubit |ψ(α)〉a. (a)
Experimentally measured probability of detection at D0, conditional on detection of
a second photon at either D2 or D3 (white dots). The surface is a fit to the data,
using equation 3.10 with an additional prefactor to account for limited visibility of
quantum interference. (b) Ideal (simulated) behaviour.

reconfigurability to implement the experiment, as outlined in 3.3.

As in chapter 2, two photons from an SPDC source are used to encode two
qubits in pairs of waveguides. Wheeler’s interferometer is implemented using the
state preparation stage of the target qubit. The system photon is coupled into the
chip, whereupon it is split across two paths by dc2, a 50/50 directional coupler.
Wheeler’s phase, ϕ, is controlled by a thermal phaseshifter (φ2). The ancilla photon
is injected into the upper two waveguides on the device (previously referred to as the
control qubit). State preparation of the |ψ〉a is accomplished using the MZI formed
by directional couplers dc1 and dc3, where phase shifter φ1 controls the α parameter.

The CH gate is implemented using the non-deterministic postselected linear-
optical CZ gate previously described (couplers 6,7,8, section 2.2.4). The CH gate
is equivalent to CZ up to local rotations. Specifically,

UCH = (I ⊗W )UCZ(I ⊗W ) (3.11)

where

W =

(
cos π

8
sin π

8

sin π
8
− cos π

8

)
. (3.12)

Implementing W gates using directional couplers dc4, dc5, dc9 and dc11 together
with phaseshifters φ4 and φ6, we can thus implement a controlled-Hadamard gate
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on the system qubit, effectively closing or opening the interferometer containing
φ2 depending on the state of the ancilla. As with linear-optical CZ and CNOT-P
gates, this gates succeeds with 1/9 probability and its operation depends on high
visibility quantum interference, requiring that the ancilla and system photons are
indistinguishable in all degrees of freedom.

Four silicon APDs are used to detect single photons at the output of the chip.
As before, we only register a subset of two-photon coincidence events (D0D2, D0D3,
D1D2, D1D3) so as to post-select on successful operation of the entangling gate.

3.4.2 Results

When sweeping the phase ϕ in Wheeler’s interferometer, we should see qualitatively
different behaviour of the system photon depending on the ancilla phase α. Specif-
ically, when α = π/2 we expect to see a sinusoidal wave interference pattern in the
probability of detection at D0 and D1, while for α = 0 we should see no interference.
For intermediate values of α, we expect continuous morphing between wave-like and
particle-like behaviour, as the effective probability amplitude for the presence of BS2

is gradually reduced. Experimental data exhibiting this effect is shown in figure 3.4.
We measured p(D0) and p(D1) for 21 values of ϕ in the interval [π/2, 5π/2] and 11
values of α in the interval [0, π/2].

A similar experiment was carried out at the same time [21] by Kaiser et al.
in the group of Sébastien Tanzilli (Nice). In contrast with our work, the authors
make use of polarization entanglement directly from the SPDC source, rather than
implementing a non-deterministic linear-optical entangling gate, and do not make
use of path-encoding. The authors measure morphing between particle and wave
behaviour qualitatively identical to the result shown in figure 3.4, again with ex-
tremely good agreement between experiment and theory. The decision to use polar-
ization encoding in this implementation is largely motivated by the fact that stable
Mach-Zehnder interferometers are difficult to construct in a bulk architecture. This
perhaps highlights the fact that the technological advances of integrated quantum
photonics, although intended primarily as a route to scalable quantum computation
and practical quantum technologies, also provide advantages for more fundamental
scientific investigations.
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(a) (b)

Figure 3.5: CHSH parameter S as a function of the phase ϕ in Wheeler’s interferom-
eter and the ancilla parameter α. All local hidden variable models satisfy |S| ≤ 2.
(a) Experimental data (white points), with a 2D sinusoidal fit. Points marked in
yellow exhibit nonlocal statistics, violating Bell-CHSH. (b) Numerical simulation of
ideal behaviour.

3.5 Device-independent tests of wave-particle

duality

The principal goal of delayed-choice experiments is to test the classical, hidden-
variable hypothesis that the photon decides in advance to behave as a particle or a
wave. Although as experimentalists we place a certain amount of trust in the notion
that the behaviour of our experimental apparatus is repeatable and consistent, we
must concede that the result shown in 3.4 does not absolutely rule out the hidden-
variable model. Even though we have good reason to believe that the ancilla qubit
is truly placed in the coherent superposition (3.8), the morphing behaviour in figure
3.4 could also be explained if it is instead prepared in the mixed state

ρ̂a = cos2(α)|0〉〈0|a + sin2(α)|1〉〈1|a. (3.13)

Under these circumstances the ancilla qubit can be equally replaced by a classical
random bit with p(0) = cos2(α), whose state is decided before the system photon
passes the first beamsplitter. The system photon is thus free to play the old trick
of examining the experimental apparatus — including this random bit — in order
to choose particle or wave behaviour in advance, and the result of figure 3.4 thus
admits a classical, hidden-variable model.
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In order to show that the choice of measurement apparatus could not have been
known in advance, we must ensure that the CH gate exhibits unambiguously quan-
tum behaviour under the circumstances of the quantum delayed-choice experiment.
As we have already seen, the output of the CH gate is ideally pure and entangled
for almost all values of ϕ and α. As a result, we can test for quantum behaviour
in a device independent way — that is, without having to place any trust in the
measuring apparatus — by attempting to violate a Bell inequality (section 1.3.8)
using the bipartite state of the system and ancilla photon.

3.5.1 Results

Experimentally, we give the ancilla qubit to Alice, who chooses from one of two
measurement bases using the interferometer UAlice formed by dc10 and dc12, together
with phaseshifters φ5 and φ7 and detectors D2 and D3. The system photon is
assigned to Bob, who performs local measurements using UBob: dc13 together with
φ8 and detectors D0 and D1. The choice of measurement operators Â0,1, B̂0,1 was
tailored for the specific class of states generated in the quantum delayed-choice
scenario — the operators usually chosen for Bell-CHSH with the singlet state do not
lead to violation here. We measured the Bell-CHSH parameter S(ϕ, α) over the same
parameter space used in figure 3.4, measuring a maximal violation S(π/2, π/4) =

2.45± 0.03. Experimental data is shown together with a simulation in figure 3.5.

Had we been able to perform the Bell test without succumbing to any loopholes,
we could now conclude decisively that the photon does not choose in advance to
behave as a particle or a wave. However, a loophole-free Bell inequality remains
experimentally out of reach — although progress continues to be made [22, 23]
— and our experiment does not in fact close any of the standard loopholes. For
instance, we make the standard fair-sampling assumption, which allows us to discard
inconclusive results and post-select on successful operation of the CH gate. The
detection loophole remains open due to limited detection efficiency, and we must
also assume independence between the operation of the photon source and the choice
of measurement setting used in the Bell inequality test. As usual, if the photons
could know in advance the choice of measurement setting in the Bell test, then a
local model can mimic Bell inequality violations.
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3.5.2 Discussion

The Greek philosopher Democritus (c. 460 BC) — proponent of atomistic theory,
scourge of Plato, and staunch advocate of cheerfulness — is quoted by Schrödinger
as having said, with respect to the fundamental makeup of the universe,

“By convention there is sweetness, by convention bitterness, by conven-
tion colour, in reality only atoms and the void.” [24]

Democritus goes on to emphasize the importance of measurement, and the difficulty
with which experimental results are reconciled with our internal understanding of
the world:

“Foolish intellect! Do you seek to overthrow [the senses], while it is from
[them] that you take your evidence?”

Even earlier, Lucretius (c. 99 BC) assigned a particle-like character to light:

“The light and heat of the sun; these are composed of minute atoms
which, when they are shoved off, lose no time in shooting right across
the interspace of air in the direction imparted by the shove.”

The history of science has since been marked by intense debate between particle and
wave theories of physics, in particular with respect to the nature of light. In Opticks
[25], Isaac Newton describes a great many experiments exploring the “reflections,
refractions, inflections and colours of light”. Despite the emphasis of this work on
optical wave phenomena, a central hypothesis is the corpuscular nature of light, in
whose defence Newton cites the tendency to travel in straight lines and cast stark
shadows — “light does not bend into the shadow”. This understanding was later
contested by the wave theories of Huygens, Young, and Maxwell in particular, whose
theory of electromagnetic waves proved so powerful as to render the corpuscular
theory untenable. In the first decade of the 20th century, new explanations for the
troublesome behaviour of of black-body radiation and the photoelectric effect, due to
Planck and Einstein respectively, gave new legs to the idea of an indivisible particle
of light with energy ~ω, the photon, and ultimately lead to the quantum theory of
light used throughout this thesis.

So, does the quantum delayed-choice experiment described here add anything
to our scientific understanding of the nature of light? Certainly, all of our experi-
mental results are consistent with known quantum theory, and this is of course true
for the “traditional” delayed-choice and double-slit experiments. Since we do not
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close all possible loopholes, our Bell-CHSH inspired test does not achieve device-
independence, although it certainly strengthens the argument that the CH gate
functions as advertised. It would be interesting to perform a more refined version
of our experiment, with space-like separation of Alice and Bob and with loopholes
closed, although it seems unlikely that this will be technologically feasible very
soon. I think that it is important to ask whether the quantum delayed-choice setup
teaches us anything about the photon over and above that which can be inferred
from photonic Bell-CHSH tests. Can we construct self-consistent theories of quan-
tum mechanics, in which the photon decides in advance to behave as a particle or
a wave (in some meaningful sense), but which nonetheless permit Bell-CHSH viola-
tion? If not, then my impression is that this work provides a useful and attractive
pedagogical tool, but nothing more.

Statement of work

All of the experimental data presented here was measured jointly by Alberto Peruzzo
and myself.
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Chapter 4

Entanglement and nonlocality with-

out a shared frame

4.1 Introduction

In many quantum information tasks, the basic scenario is one of two parties, Alice
and Bob, who share an entangled state |ψAB〉 originating from a source. Alice and
Bob may wish to use this state to communicate securely (section 1.4.2), violate a
Bell inequality (1.3.8), perform teleportation, tomography (2.6), or to evaluate the
degree of entanglement of the state (1.3.7). Perhaps they are space-like separated,
maybe they are in the same lab, perhaps |ψAB〉 is a resource state in a quantum
computer — we have already discussed many such scenarios.

One assumption that is very often made in theoretical works is that Alice and
Bob share a reference frame. That is, they agree on a coordinate system in which
Bob’s “up” is the same as Alice’s, and they can, for example, measure qubits in the
σ̂x,y,z bases. This assumption is often valid — in proof-of-principle experiments we
usually operate within the frame of the laboratory, and have classical tools at our
disposal to precisely calibrate and align Alice and Bob with respect to one another.
However, there are many real-world scenarios in which full calibration and alignment
is not possible.

In single-mode optical fiber, natural and unavoidable fluctuations in tempera-
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ture and stress give rise to unknown, random, unitary rotations of the polarization
of transmitted light [1]. These rotations roughly span the entire space of SU(2)

— although not in any uniform way — and largely preclude the use of polariza-
tion encoding in classical telecommunications. Optical satellite links, proposed as a
real-world target for photonic quantum communication [2–4], suffer from continuous
rotation of the satellite with respect to earth, as well as timing drift, necessitating
complex tracking and correction systems (figure 4.1). Path encoded qubits in bulk
suffer from thermal/acoustic phase instability, which gives rise to unknown random
unitary rotations of the qubit reference frame. Even if the setup is perfectly stable,
we sometimes just do not have the time or tools to calibrate phaseshifters, wave-
plates, and polarization controllers. As quantum technologies become increasingly
complex, these issues will not disappear.

In all such scenarios, unknown rotations decouple Alice’s reference frame from
Bob, effectively breaking most tomographic protocols, entanglement witnesses, Bell
tests, and QKD. Sometimes we can use active stabilization or further classical com-
munication to establish a shared frame, but it is interesting to ask — how well can
we perform these QI tasks in the absence of any shared reference frame?

In this chapter we show how detection of Bell nonlocality can be guaranteed
— preserving device independence — without a shared frame, even in the absence
of well-calibrated devices. We experimentally demonstrate that by randomizing
voltages on the CNOT-MZ, we can violate a Bell inequality with high probability.
Finally, we describe a practical method to accurately measure the degree of entangle-
ment of a two-qubit state despite time-dependent unitary noise on the local channel
between source and observer. This method makes direct use of Haar-random noise
to improve performance, and allows an experimentalist to detect entanglement by
simply shaking, bending and twisting non-polarization maintaining optical fiber. We
discuss possible applications of this scheme to measurement and secure communica-
tion.

4.2 Bell tests without a shared frame

In sections 1.3.8, 1.4.2, and 2.8 of this thesis we have seen the significance of non-
locality as a fundamental quantum mechanical phenomenon, as well the utility of
nonlocal correlations as a tool for device-independent quantum communication and
state characterization. Bell tests such as Bell-CHSH, described in detail in sec-
tion 1.3.8, provide an experimental prescription for rigorous certification of nonlocal
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Figure 4.1: Bell violations with random measurements. (a) A source generates
entangled pairs, and photons are sent to Alice and Bob respectively. We consider a
scenario in which Alice and Bob do not share a frame of reference — that is, they
cannot choose a common measurement basis — and are therefore forced to measure
in randomly oriented bases. (b) We use the CNOT-MZ to experimentally test a
scheme which guarantees Bell inequality violation even in the absence of a shared
reference frame. Path-entangled photon pairs are generated by the CNOT-P gate
and measured in a qubit basis by Alice and Bob, who are implemented using the
readout stage of the CNOT-MZ. The choice of measurement setting is accomplished
using thermal phase shifters φ5−8.

statistics.

It will be convenient to first re-write the Bell-CHSH inequality (1.42) using a
slightly different notation. We assume that Alice and Bob measure a two-qubit
state |ψ〉 using m local measurement settings per party, Âj, B̂j, i, j ∈ [0,m− 1]

respectively. For m = 2, all local hidden variable (LHV) models must satisfy the
Bell-CHSH inequality

|S| = |〈Â0B̂0〉+ 〈Â0B̂1〉+ 〈Â1B̂0〉 − 〈Â1B̂1〉| ≤ 2. (4.1)

Since the indexing of each measurement setting Âi, B̂j is arbitrary, terms in 1.42 can
be possibly permuted, moving the minus sign and creating a number of equally valid
Bell inequalities. Local-realistic models satisfy all such permutations. For instance,
|〈Â1B̂0〉+ 〈Â1B̂1〉+ 〈Â0B̂0〉 − 〈Â0B̂1〉| ≤ 2 holds for all LHV theories. Violation of
any of the 36 allowed inequalities witnesses nonlocal behaviour.

For two qubits, although entanglement is necessary in order to obtain nonlocal
statistics, it is not sufficient1. Even if Alice and Bob share a maximally entangled
state, they will not necessarily violate CHSH if they do not measure in appropriate
bases. To see this, first assume that Alice and Bob share the maximally entangled

1Note that the picture is more complex for multi-particle scenarios, where nonlocality can be
seen without entanglement. See for example [5]
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Bell state |Ψ−〉. Letting Â0 = σ̂x, Â1 = σ̂z, B̂0 = σ̂x, B̂1 = σ̂z , it is simple to
show that S = 0, yielding no violation, and no nonlocal correlations. However, if we
rotate B̂j,

B̂0 =
σ̂x + σ̂z√

2
, B̂1 =

σ̂x − σ̂z√
2

(4.2)

we recover maximal violation of CHSH, |S| = 2
√

2. In the theoretical discussion of
such scenarios it is often implicitly assumed that Alice and Bob share a reference
frame. How does CHSH perform when there is no common frame?

4.2.1 Theory

Let us assume that Alice and Bob share the singlet state |Ψ−〉, but have no infor-
mation that would allow them to establish a shared reference frame, and that they
are interested in violating Bell-CHSH with the greatest possible efficiency. In this
discussion it will be useful to consider the measurement settings of Alice and Bob
in terms of their Bloch vectors (1.47) ~ai, ~bj ∈ R3. Alice and Bob each choose two
vectors ~a0,1 and ~b0,1, independently from a uniform distribution over the 2-sphere
(equivalent to the Haar measure for SU(2), see section 1.3.1), and measure in all
combinations of ÂiB̂j. In 2010, Liang et al. showed [6] that Bell violation is achieved
in this scenario with a probability of ∼ 28%. If Alice and Bob are each able to choose
mutually unbiased vectors, orthonormal in the Bloch sphere and obeying ~ai ·~aj = δij,
this probability increases to ∼ 42%. This analysis has been generalized to the mul-
tipartite case [6, 7], as well as to schemes involving decoherence-free subspaces [8].
These results show that it is more probable to detect nonlocality than one might
naïvely expect. However, can it be guaranteed?

So far we have allowed only two measurement settings per party. Consider now a
scenario in which each party chooses three settings, Â0,1,2 and B̂0,1,2 where we again
demand that these measurements are mutually unbiased, thus forming randomly-
oriented orthogonal triads in the Bloch spheres of Alice and Bob respectively. It
turns out that in this situation, we can always find a valid Bell inequality of the
form (4.1) which is violated. In other words, by adding one measurement setting
per party, detection of nonlocality can be guaranteed.

Proof: Assume that ~ai∈{0,1,2} and ~bi∈{0,1,2} are mutually unbiased vectors corre-
sponding to qubit measurement operators Âi and B̂j. Alice and Bob evaluate these
expectation values for the singlet state |Ψ−〉 over all combinations of i, j and can
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then write them in matrix form,

E =


E00 E01 E02

E10 E11 E12

E20 E21 E22

 . (4.3)

It is straightforward to show that these expectation values are given by the scalar
product Eij = 〈ÂiB̂j〉 = −~ai ·~bj. The columns of E are therefore equivalent to the
coordinates b′k of the Bloch vectors ~bj in the basis ~ai}. By re-labelling measurement
settings and outcomes we are free to permute rows and/or columns of this matrix
as well as possibly change their sign. We can therefore assume, without loss of
generality, that E00,11,22 > 0, and that E22 is the largest element by absolute value in
E . ~bj are orthonormal, giving ~b2 = ±~b0×~b1 and therefore |E22| = |E00E11−E01E10|.
Now, E22 = E00E11 − E01E10 ≥ E00, E11, |E01|, |E10| and E01E10 ≤ 0. We assume
that E01 ≤ 0 and E10 ≥ 0, if this is not the case then we are free to multiply the
second row and column by −1. Now we have that

(E00 + E10) max[−E01, E11] ≥ E00E11 − E01E10 = E22 ≥ max[−E01, E11]. (4.4)

Dividing by max[−E01, E11] > 0, we find E00 + E10 ≥ 0. Using a similar method,
we can show −E01 + E11 ≥ 0. Adding these inequalities, we obtain

E00 + E10 − E01 + E11 ≥ 1 . (4.5)

By construction, E is an orthogonal matrix. Therefore, this inequality is satisfied if
and only if E00 + E10 = 0, −E01 + E11 = 0 and ~a0 = ~b0, ~a1 = ~b1 and ~a2 = ~b2. That
is, so long as Alice’s measurements are not perfectly aligned with respect to Bob’s,
CHSH is violated. �

An independent proof of this result was obtained by Wallman and Bartlett [9],
and published shortly after our manuscript appeared in Scientific Reports.

We have shown that CHSH can be violated with certainty without a shared
reference frame, when Alice and Bob share a perfect maximally entangled state.
However, in order for this scheme to be practically relevant, we must consider its
performance under realistic experimental imperfections.

Experimental Bell tests are necessarily limited to measuring finite statistics, re-
sulting in uncertainty in measured expectation values. This gives rise to error in S,
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Figure 4.2: (a) Bell tests using random measurement triads. Numerically computed
distribution of maximum CHSH violation for uniformly random, mutually unbiased
measurement triads on a singlet state. (b) Bell tests using completely random
measurements, without calibration. Numerical calculation of the probability of Bell
violation as a function of Werner state visibility V , for different numbers m of
uniformly random random measurements per party.

and we must therefore examine the distribution of CHSH over all allowed measure-
ment settings to ensure that the probability of violation remains high despite such
uncertainty. Figure 4.2(a) shows a numerical calculation of the distribution of |S|
when ~ai, ~bj are constructed around a random vector chosen by the Haar measure.
The distribution is perhaps surprisingly weighted towards large violation, with a
mean value S̄ ∼ 2.6. In order to take into account experimental uncertainty δ in S
we can shift the local bound L, modifying Bell-CHSH as

|S| ≤ L = 2 + δ. (4.6)

Even with δ = 0.2, corresponding to only a few hundred detection events, the
probability of violation for a perfect singlet state remains at ∼ 99.7%.

Of course, entangled states in prepared in the lab are never perfect. We use a
partially mixed Werner state (1.51), whose purity is characterised by the visibility
V , to model this imperfection. Note that this is not equivalent to the visibility of
quantum interference (1.134). Figure 4.2(a, inset) shows the probability of violation
as a function of V , demonstrating the robustness of generic nonlocality to imperfect
experimental state preparation. For example, with V = 0.9 and δ = 0.1, the
probability of violation remains greater than 98.2%.
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Figure 4.3: Bell tests requiring no shared reference frame. (a) 100 successive Bell
tests. In each iteration, both Alice and Bob use a randomly-chosen measurement
triad. For each iteration, the maximal CHSH value is plotted (black points). We
observe CHSH violation in all trials; the red line indicates the local bound (S = 2).
The smallest CHSH value is ∼ 2.1, while the mean CHSH value (dashed line) is ∼
2.45. This leads to an estimate of the visibility of V = 2.45

2.6
' 0.942, to be compared

with 0.913±0.004 obtained by maximum likelihood quantum state tomography [10].
This slight discrepancy is due to the fact that our entangled state is not exactly of
the form of a Werner state. Error bars are too small to draw. (b) The experiment
of (a) is repeated with reduced visibility of quantum interference, illustrating the
robustness of the scheme. Each point shows the probability of CHSH violation
estimated using 100 trials. Uncertainty in probability is estimated as the standard
error. Visibility for each point is estimated by state tomography, where the error
bar is calculated using a Monte Carlo approach. Red points show data corrected for
accidental coincidences. The black line shows the theoretical curve from Fig. 4.2
(inset).

4.2.2 Experiment

The scheme described here is immediately applicable to a broad variety of scenarios,
physical systems, and qubit encodings, including polarization states of entangled
photons in optical fiber and free space, and path-encoding in photonic chips. We
chose to perform our experimental implementation using the cnot-mz chip previ-
ously described, providing two path-encoded qubits with arbitrary state preparation
and measurement capabilities. The scheme for reference-frame independent Bell vi-
olation described here is not absolutely necessary in order to violate CHSH on the
cnot-mz, as alignment of reference frames is relatively straightforward. However,
as we show in the next section (4.3), an extension to this scheme allows Bell viola-
tion with the CNOT-MZ in a “black-box” scenario, using completely uncalibrated
phaseshifters.

We experimentally tested the situation in which Alice and Bob measure the
singlet using orthogonal measurement triads. We prepare the singlet state using
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indistinguishable photons from a type-I SPDC source, together with the cnot’ gate
and local rotations as described in section 2.6.3. We then generate randomly chosen
measurement triads ~ai,~bj using a pseudo-random number generator [11]. Having
calibrated the phase/voltage relationship of the phase shifters as described in section
2.3.3, we then apply appropriate voltages to phaseshifters φ5−8 in order to perform
the nine measurements, evaluating Eij. For each measurement setting, two-photon
coincidence counts between all 4 combinations of APDs (C00, C01, C10, C11) are
then measured for a fixed amount of time. The typical rate of simultaneous photon
detection coincidences was ∼ 1 kHz. From this data we compute the maximal
CHSH value as detailed above, and the entire procedure is repeated 100 times. The
results are presented in Fig. 4.3(a), where accidental coincidences, arising primarily
from photons originating from different down-conversion events, which are measured
throughout the experiment, have been subtracted from the data. Remarkably, all
100 trials lead to a clear CHSH violation; the average CHSH value we observe is
∼ 2.45, while the smallest measured value is ∼ 2.10.

The visibility of the highest-fidelity experimental state was 0.913± 0.004, mea-
sured by maximum-likelihood quantum state tomography. Experimental imperfec-
tion in the photon source, cnot-mz device, and phaseshifter calibration all account
for reduced visibility of the state, as described in 2.9.1. In order to further test the ro-
bustness of the reference-frame-independent scheme described here, we deliberately
introduced a temporal delay between the two photons at the SPDC source, increasing
their distinguishability. The effect is as though the cnot’ gate implements an inco-
herent mixture of the cnot’ and identity operations [12]. Note that this does not re-
produce the Werner state ρ̂V , instead approximating ρ̂ = p|Ψ−〉〈Ψ−|+(1−p)|01〉〈01|,
where p depends non-trivially on the temporal delay.

We repeat the protocol described above for a range of visibilities, estimating
the visibility of the state through tomographic reconstruction of the experimental
density matrix. Figure 4.3(b) clearly demonstrates the robustness of our scheme,
in good agreement with theoretical predictions: a considerable amount of mixture
must be introduced in order to significantly reduce the probability of obtaining a
CHSH violation. The discrepancy between experiment and theory is largely due to
tomographic errors and the fact that we do not exactly prepare the Werner state
(1.51). Together these results show that large Bell violations can be obtained without
a shared reference frame, even with realistic experimental imperfections.
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4.3 Bell Tests without calibrated devices

Although Alice and Bob do not need to share a reference frame in order to implement
the scheme described above, they nonetheless require well-calibrated measurement
devices in order to construct mutually unbiased measurement triads. Calibration of
measurement devices, such as wave-plates, phaseshifters, etc. is a routine task, but
may be challenging or even impossible in certain scenarios, forcing Alice and Bob
to measure in completely random, non-orthogonal bases, which are unlikely to be
uniformly distributed on the 2-sphere.

It was shown in [6] that if Alice and Bob choose measurements entirely at random,
the probability of violation is p ∼ 28%. If they make n repeated measurements of S
using random settings, they will asymptotically approach unit probability of eventual
violation as Pn ∼ 0.72n. Can they do better than this?

4.3.1 Theory

Assume that Alice and Bob measure all possible expectation values Eij over m ran-
dom measurement settings per party ~ai and~bj. We can again write these expectation
values in matrix form,

E =



E00 E01 E02 E03 . . .

E10 E11 E12 E13 . . .

E20 E21 E22 E23 . . .

E30 E31 E32 E33 . . .

. . . . . . . . . . . .
. . .


(4.7)

Now, there are an enormous number of ways in which groups of four expectation
values from E can be combined to form valid CHSH inequalities in the form of
(4.1). As a result, although it is no longer guaranteed that we will obtain nonlocal
statistics, the probability of violation increases rapidly with m to the extent that
for m = 5, assuming a perfect singlet state, p ∼ 99.5%. This approach is similarly
robust to limited visibility of the state, yielding ∼ 97% probability of violation when
V = 0.9 and m = 5. Figure 4.2 shows the results of numerical simulations of this
scenario for m ∈ [2, 8].
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Figure 4.4: Experimental Bell tests using uncalibrated devices. We perform Bell
tests on a two-qubit Bell state using uncalibrated measurement interferometers,
choosing voltages uniformly from the interval [0, 7]V . For m = 2, 3, 4, 5 local mea-
surement settings, we perform 100 trials (for each value of m). As the number
of measurement settings m increases, the probability of obtaining a Bell violation
rapidly approaches one. For m ≥ 3, the average CHSH value (dashed line) is above
the local bound of CHSH=2 (red line). Error bars were estimated by a Monte
Carlo technique, assuming Poissonian statistics. This data has been corrected for
accidental coincidences.

4.3.2 Experiment

Although the phaseshifters in the cnot-mz device had been well calibrated prior
to this experiment, we emphasise the time-consuming nature of the calibration pro-
cedure, and the fact that the phase-voltage relationship is not consistent across
heaters. To further complicate calibration, the phase-voltage response of an individ-
ual heater will drift with use over time. In order to demonstrate the robustness of
the above scheme to non-uniform randomness in the choice of measurement settings,
we performed Bell-CHSH tests without making use of the available phase-voltage
information for phaseshifters φ5−8.

Having prepared the singlet state using the cnot′ gate, we chose the measure-
ment operators ~ai and ~bj by randomly picking voltages in the interval [0, 7]V for
phaseshifters φ5,6 and φ7,8 respectively, where 7V is simply a hardware limitation of
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the heaters. Since the phase-voltage response of each heater is nonlinear (see section
2.3.3), this gives rise to phases which are not uniformly distributed in the interval
[0, 2π], and therefore measurement bases Âi, B̂j which are certainly not chosen by
the Haar measure.

We implemented this protocol for m ∈ {2, 3, 4, 5}, observing a rapid increase in
the probability of violation with m, as shown in figure 4.4. For m = 5, we find 95
out of 100 trials lead to a CHSH violation, even when the choice of measurement is
not uniformly random. The visibility V of the state used for this experiment was
measured using state tomography to be 0.869± 0.003.

4.4 Discussion

Often, entanglement and nonlocality are seen as rare and fragile phenomena, ex-
tremely sensitive to experimental noise and imperfection. By showing that nonlo-
cality can be robustly detected without the need to calibrate or align measurement
devices, even with limited visibility of state preparation, we have provided a new
fundamental insight into the generic nature of nonlocality.

The schemes described here potentially have practical applications. First, Bell
tests provide an unambiguous and device-independent test for the presence of en-
tanglement — a powerful tool for the future development of quantum technologies
— and the ability to perform such tests without calibration or alignment will likely
facilitate such tests in some scenarios. The necessary criteria for a loophole-free
reference-frame independent Bell test using the scheme described in section 4.2 are
discussed in further detail by Gómez et al. [13], paying particular attention to
detection efficiencies. A further experimental implementation of Bell tests using or-
thogonal triads has been performed by Matthew Palsson et al. [14]. It has recently
been proposed [15] that this scheme might also facilitate the detection of nonlocality
of a single photon (see, for example, ref. [16]).

We also expect that this work will find applications in quantum communication
protocols. Previous work by Laing et al. [17] describes a technique for reference-
frame independent QKD in which the parties share in advance a single common
measurement basis, and this theory has recently been implemented in collaboration
with Nokia [4, 18]. Our work extends this capability to the case where no knowl-
edge of the reference-frame is shared. More recent interest in the general topic of
alignment-free quantum communication has been reviewed by D’Ambrosio et al.
[19], and an experimental implementation of device-independent QKD without a
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Figure 4.5: (a) Charlie has an untrusted source of two-qubit states ρ̂C , which he
claims is entangled. Alice and Bob want to reliably estimate some measure of en-
tanglement generated at the source, but their view is obscured by an unstable unitary
channel. (b) Photonic experimental implementation. Charlie has a type-2 SPDC
source of photon pairs, which can be switched between entangled and separable oper-
ation. He sends photon pairs to Alice and Bob through non-polarization-maintaining
optical fiber, which is continuously moved, bent, and twisted throughout the exper-
iment. (c) Numerical simulation, showing the distribution of T = 1

N

∑
i |〈ZZ〉i|,

when Charlie prepares any separable state (red lines) vs. any maximally entangled
state (blue lines). Alice and Bob are thus able to distinguish entangled and separable
sources.

shared reference frame, using our theoretical framework, was recently described in
[20].

4.5 A noise-powered entanglement detector

In the previous discussion, although the relative orientation of Alice and Bob’s
frames is unknown, it was assumed that this orientation does not change between
consecutive measurements, i.e. every element of (4.3) can be estimated before ~ai,~bj
change by any appreciable amount. However, for realistic unstable reference frames
— including polarization in fiber and bulk path interferometers — the rate of change
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is often so high that this assumption does not hold.

We now consider the situation in which each reference frame changes, uniformly
and at random, every time Alice and Bob measure an expectation value. Naïvely, it
might appear that there is then very little that Alice and Bob can say about the state,
as they are forced to make observations through a “fog” of random, uncorrelated
local unitary rotations. However, we will introduce a simple protocol which exploits
this noise, allowing Alice and Bob to distinguish between entangled and separable
sources, and estimate certain physical properties of the state. We discuss immediate
practical applications of this scheme with respect to state characterization and secure
communication.

The experimental scenario is illustrated in figure 4.5. Charlie has a source, which
generates qubit pairs in the state ρ̂C . He claims that ρ̂C is entangled, but this claim
is not trusted. Charlie sends qubit pairs to two observers, Alice and Bob, who
measure their respective systems in a local basis before comparing measurement
outcomes. The channels between Charlie and Alice/Bob, corresponding to unitary
operators ÛA(t), ÛB(t), are assumed to be lossless but unstable. At some time t,
the two-qubit channel Û is described by a unitary operator

Û(t) = ÛA(t)⊗ ÛB(t), (4.8)

where ÛA(t), ÛB(t) are chosen independently and at random from the Haar measure
on SU(2). After some interval ∆t, instability in the channel leads to new instances of
ÛA, ÛB, drawn again from the Haar measure. During a single timestep tj = t0 +j∆t,
Alice and Bob receive n copies of the state

ρ̂iAB = Û(tj) ρ̂C Û(tj)
† = Ûj ρ̂C Û †j (4.9)

where n is sufficiently large to give a good estimate of the expectation value

Ej = 〈Âj ⊗ B̂j〉 = Tr (ρ̂jAB Âj ⊗ B̂j), (4.10)

where Â, B̂ are Alice and Bob’s single-qubit measurement operators respectively.

Alice and Bob would now like to determine whether Charlie’s state is entangled.
Note that Charlie is not held accountable for the behaviour of the channel — Alice
and Bob care about the degree of entanglement of ρ̂C , which is independent of Û .
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Averaging over all time (t→∞), the state seen by Alice and Bob is

ρ̂∞AB =

∫ ∞
0

dt (Û(t) ρ̂C Û(t)†) =

∫
SU(2)⊗SU(2)

d Û (Û ρ̂C Û †). (4.11)

Since the defining representation of SU(2)⊗SU(2) is irreducible (all local two qubit
operations leave no nontrivial subspaces invariant), Schur’s lemma implies that ρ̂∞AB
is proportional to the identity regardless of ρ̂C , and due to normalization, ρ̂∞AB = 1/4,
i.e. Alice and Bob sees a maximally mixed state.

What happens if Alice and Bob attempt to perform quantum state tomography
(section 2.6), ignoring fluctuations in the channel? Since tomography depends on
a finite number of measured expectation values (t <∞), the reconstructed density
matrix is not necessarily maximally mixed, but nevertheless provides an unfaithful
representation of ρ̂C , and is not guaranteed to contain information on the degree of
entanglement. If Alice and Bob attempt to evaluate CHSH, the situation is even
worse: a basic condition for CHSH is that the state should not change between
measurements, and when this condition is broken Alice and Bob can erroneously
detect a Bell violation even when Charlie’s state is separable. In fact, numerical
simulations indicate that separable and entangled sources both violate CHSH with
equal probability, ∼ 1%.

Assuming that ÛA, ÛB are Haar-random, Alice and Bob know that no partic-
ular choice of local measurement basis can give more information than any other.
Without loss of generality, we can therefore assume that they always measure the
σ̂z basis, obtaining expectation values

Ej = 〈σ̂z ⊗ σ̂z〉 = Tr
(

(σ̂z ⊗ σ̂z)(Ûj ρ̂CÛ †j )
)
. (4.12)

It can easily be shown that the average value of Ej over all Ûj is always 0, regardless
of ρ̂C . However, if we take the absolute value of Ej before averaging, we will show
that the quantity

T ≡ 〈|E|〉 =
N∑
i=0

|Ej|
N

, (4.13)

distinguishes entangled states from separable states, and can be used to infer the
degree of entanglement of ρ̂C . Figure 4.5(c) is result of a numerical simulation, show-
ing the distribution of T for a separable state |00〉 and a maximally entangled state
|Ψ−〉, averaging over N measurements. All separable pure states give a mean value
T = 1/4, while all maximally entangled two-qubit states give T = 1/2. Partially
entangled states give intermediate values. Maximally mixed states give T = 0. As
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the number of averages N is increased, each probability distribution converges to-
wards a Gaussian profile with FWHM proportional to 1/

√
N , following the central

limit theorem. By taking an increasing number of measurements, Alice and Bob
can therefore distinguish a separable state from an entangled state to an arbitrary
confidence level.

Proof: Given that Û = ÛA ⊗ ÛB where ÛA,B are chosen by the Haar measure
on SU(2), we can assume without loss of generality that, after the channel, any
separable state is equivalent to the state |00〉 and any maximally entangled state is
equivalent to the singlet |Ψ−〉. Unitary rotation of a qubit followed by measurement
in the σ̂z basis is equivalent to measurement in the effective basis M̂ eff = Û †σ̂zÛ .
Rather than integrating ÛA,B over the Haar measure on SU(2), it is simpler to
consider the Bloch vectors ~aj,~bj ∈ R(3), which depend on ÛA,B and map to Alice
and Bob’s effective measurement operators

Âeff
j = ~aj · ~σ = axj σ̂x + ayj σ̂y + azj σ̂z (4.14)

B̂eff
j = ~bj · ~σ = bxj σ̂x + byj σ̂y + bzj σ̂z, (4.15)

which correspond to points on the 2-sphere S(2). For the singlet, the expectation
value (4.12) is simply given by the dot product, Ej = −~aj ·~bj. For |00〉, the expec-
tation value is Ej = azj a

z
j .

In order to compute the average value of T in the asymptotic limit of infinite
statistics, we must now integrate |E| over SU(2) × SU(2). This is equivalent to
integrating each Bloch vector over the 2-sphere,

〈|E|〉∞ =

∫
S(2)

d~a

∫
S(2)

d~b |E|. (4.16)

First, consider the singlet state. The absolute expectation value |E| = |~a · ~b| =

| cos(φ)| depends only on the angle φ between ~a and~b. To emphasise, it depends only
on the relationship between the two channel unitaries. Without loss of generality,
we can therefore fix ~a such that Â1 = σ̂z. Then, we integrate |E| over ~b using a
single parameter, φ, which rotates ~b about the x-axis of the Bloch sphere. In order
to integrate this angle uniformly over S(2), we must take φ = cos−1(2v − 1), where
v is uniformly distributed in the interval [0, 1]. Now,

〈|E|〉∞ =

∫ 2π

0

dφ| cosφ| =
∫ 1

0

dv|2v − 1| = 1

2
. (4.17)
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Figure 4.6: (a) Numerical simulation of average T values for states of varying
purity and concurrence. The heatmap shows the mean value of T as a func-
tion of the purity Tr(ρ̂2

C) and concurrence C(ρ̂C) , over states parametrized as
ρ̂C(v, µ) = v|φ(µ)〉〈φ(µ)| + (1 − v)1/4 , with |φ(µ)〉 =

√
µ|Ψ−〉 +

√
1− µ|00〉. The

white area of the figure is unphysical: maximally mixed states cannot be maximally
entangled. Wavelike features in the figure are an artefact of the numerical inter-
polation method. (b) Numerical simulation, showing the behaviour of 〈|E|〉 when
the channel fluctuates on a timescale shorter than that required to measure a single
expectation value.

Now consider the separable state. The absolute expectation value |E| = |az · bz|
depends on both the relationship and the individual directions of ~a, ~b. Writing this
expression in terms of the angles φ1, φ2 between ẑ and ~a, ~b respectively, we have
|E| = | cosφ1 cosφ2|. Using the same parametrization to uniformly integrate over
S(2) in (4.16), this becomes

〈|E|〉∞ =

∫ 2π

0

dφ1

∫ 2π

0

dφ2| cosφ1 · cosφ2| (4.18)

=

∫ 1

0

dv1

∫ 1

0

dv2|(2v − 1)(2v − 1)| = 1

4
. (4.19)

So, all maximally entangled two-qubit states have T̄ = 1/2 and all separable states
have T̄ = 1/4. �

To see how this scheme performs for states other than |00〉 and |Ψ−〉, we consider
the state

ρ̂C(v, µ) = v|φ(µ)〉〈φ(µ)|+ (1− v)1/4, (4.20)

where |φ(µ)〉 =
√
µ|Ψ−〉 +

√
1− µ|00〉, which can be continuously tuned between a

maximally entangled pure state, a separable pure state, and the maximally mixed
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Figure 4.7: Experimental data. (a) Expectation values Ej = (C00 − C01 − C10)/C,
measured as a function of time for a Bell state (blue lines) and a separable state (red
lines), with optical fiber subject to constant bending and twisting. (b) Values of T
computed from the data shown in (a), with N ∈ [1, 20]. The entangled distributions
(red lines) are clearly distinguishable from the separable state data (blue lines). By
encoding bits of information in the choice of entangled/separable state, an image
can be sent through the noisy polarization channel. Inset (i) source image sent
by Charlie, (ii) image recovered by Alice and Bob. (c) Twisting optical fiber does
not sample uniformly from SU(2). This data was measured using waveplates to
experimentally implement ∼ 100 unitaries sampled numerically from SU(2)×SU(2).
Blue and red dots show the quantum and classical experimental distributions of T
respectively, for N = 4. Solid lines show the theoretical prediction. Inset: real and
imaginary parts of |Ψ−〉 as generated by the source, characterized by quantum state
tomography.

state. Figure 4.6(a) shows the results of a numerical calculation of the mean value
of T , as a function of the purity and concurrence of ρ̂C(v, µ) for various values of
v and µ. As we would expect of a sensible entanglement measure, T is maximal
for a maximally entangled state (T = 1

2
) and minimal for the maximally mixed

state (T = 0). As the concurrence or purity of the state is reduced, the strength
of correlations is naturally reduced and T falls off monotonically. Note that for
separable states, T also gives a measure of purity.

4.5.1 Experiment

We experimentally tested this scheme using polarization-entangled photon pairs,
with both artificial and environmental sources of instability.



162

Experimental setup

The experimental setup is shown in figure 4.5. We used a type-II spontaneous
parametric downconversion source, as described in section 1.6.3 of this thesis, to
generate entangled photon pairs at 808nm. A 404nm Toptica iBeam laser at 60mW
was focussed to a waist of ∼ 40 µm on a 2mm-thick BiBO crystal. We collected
down-converted photons at the intersection of the two cones as shown in figure 1.8,
using two prisms. Each photon was sent through an arrangement of quarter-wave
and half-wave plates, allowing arbitrary SU(2) polarization rotations to be applied.
A 1mm-thick uniaxial BiBO crystal was used to compensate for temporal walk-off
between horizontal and vertical polarizations. Each arm of the source was then
coupled into ∼ 4m of SMF (OZ optics, 808nm). The measurement setup consisted
of two fibre-coupled PBS and four Perkin Elmer APD single-photon detectors, and
allows polarization readout in the {|H〉, |V 〉} basis. A linear polarizer was optionally
inserted into each arm, before the fiber, allowing projective measurements to be
performed without the influence of uncontrolled polarization rotations due to the
fiber.

Source characterization

The source was optimized to prepare the Bell state

|Ψ+〉 =
1√
2

(|01〉+ |10〉) =
1√
2

(|HV 〉+ |V H〉) , (4.21)

where the phase between |HV 〉 and |V H〉 terms is determined by the orientation
of the compensation crystals. The experimental state was characterized by full
quantum state tomography. The waveplates and polarizers shown in figure 4.5 were
used to implement 36 linearly independent, mutually unbiased measurements, as
described for path encoding in section 2.6, and the state was then reconstructed
using the same standard maximum-likelihood technique. Real and imaginary parts
of the reconstructed density matrix are shown in figure 4.7(c, inset). The quantum
state fidelity with respect to |Ψ−〉 was found to be 0.965 ± 0.002. After losses due
to optical elements, fiber coupling, and detector inefficiency, the twofold count-rate
registered at the detectors was typically ∼ 1000 counts per second.

Environmental noise

As already discussed, the polarization of light is not maintained by SMF. The bire-
fringence of the fiber is affected by mechanical stress, and a piece of uniformly



4. Entanglement and nonlocality without a shared frame 163

stressed fiber has an equivalent effect to a wave-plate, whose characteristic phase-
shift depends on the strain, fiber length, core diameter, temperature, and wavelength
of light. In fact, arbitrary SU(2) polarization rotations can be accomplished using
a single piece of SMF, by applying controlled stress to three different regions —
these devices are typically marketed as “fiber polarization controllers”. A section
of fiber exposed to uncontrolled temperature variation and mechanical vibration in
the ambient environment of the laboratory will therefore tend to effect a slowly
time-varying, arbitrary, random polarization rotation upon the light it carries. The
fact that telecom optical fiber networks do not typically use polarization encoding
is partly due to cost involved in overcoming this effect.

In our first experiment, we investigated the performance of our technique us-
ing random unitary rotations generated in this way. Removing both polarizers, we
connected each arm of the source to a fibre-coupled PBS which, together with two
detectors, projects onto the |H〉, |V 〉 states — i.e. measurement in the σ̂z basis.
We then recorded coincidence count-rates cHH , cHV , cV H , cV V , corresponding to the
|HH〉, |HV 〉, |V H〉, |V V 〉 basis states respectively, while manually straining, bend-
ing and shaking both optical fibers. We accumulated ∼ 250 expectation values

Ej =
cHH − cHV − cV H + cV V
cHH + cHV + cV H + cV V

. (4.22)

Inserting a linear polarizer at 0◦ into one arm of the source, we then filtered out the
|HV 〉 term of (4.21) — rendering Charlie’s state separable — and took a second set
of data, manipulating the fibers as before. Raw data for both states is shown in figure
4.7. Although the average expectation value 〈Ej〉 is equal to zero for both states, the
entangled state is clearly more likely to yield strongly correlated or anticorrelated
statistics. Figure 4.7 shows the distribution of the absolute expectation value, when
averaging over N measurements, for N ∈ [1, 20]. As predicted, we see a clear
distinction between distributions generated by the entangled and separable states,
becoming increasingly pronounced with larger values of N . When Charlie prepares
|Ψ+〉, the average value of T (4.13) was found to be 〈T 〉 ∼ 0.399. For the separable
state |V H〉, we found 〈T 〉 ∼ 0.163.

The distribution of random unitaries generated by manual manipulation of SMF
is not perfectly uniform. Moreover, it is inevitable that the fiber will move somewhat
during each measurement step, in which case the measured expectation value is
averaged over a continuum of states. This leads to an overall reduction in the
absolute expectation value, and explains why measured values of 〈T 〉 were not closer
to 1/2 and 1/4 respectively. Experimentally, it will often be the case that the
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channel unitary will change by a significant amount during the measurement of a
single expectation value. A numerical analysis of the performance of this scheme
under such conditions is shown in figure 4.6(b). Although 〈T 〉 does indeed reduce
as the maximum rate of change of the channel is increased, we note a consistent
separation between entangled and separable states, suggesting that they might still
be distinguished even when the channel fluctuates much faster than a measurement
can be made.

In order to illustrate a possible practical application of this scheme, we consider
a situation in which Charlie must send a message to Alice and Bob. By switching
between entangled and separable state preparation, Charlie can encode the zero and
one states of a classical bit, which can then be read out by Alice and Bob — despite
noise on the channel. We used this approach to send 100 bits of data, comprising an
image of the character π, from source to observer with a statistical fidelity of 85%.
Results are shown in figure 4.7(b, inset).

Haar-random noise

Stressed optical fibre provides a practical example of an unstable environmental
channel, but does not typically sample uniformly from SU(2). In order to perform
a more controlled test of the theoretical results outlined above, we took measure-
ments using an arrangement of waveplates to implement each qubit channel. Po-
larizers were inserted into each beam, allowing each qubit to be projected into the
{|H〉, |V 〉} basis without any influence from the fibre. By setting the fast-axis an-
gles of three consecutive waveplates (quarter wave plate (QWP), half wave plate
(HWP), QWP in that order), any unitary polarization rotation in SU(2) can be
realized. Following the approach of Mezzadri [11], we sampled ∼ 40 pseudo-random
separable two-qubit unitaries from the Haar measure and solved for the requisite
waveplate angles. Setting these angles to Alice and Bob’s waveplates, we measured
expectation values for both the separable state and the singlet, as before. The dis-
tribution of experimentally measured expectation values is shown, for each state, in
figure 4.7(c). We measured mean values of 〈T 〉 of 0.5± 0.1 and 0.18± 0.07 for the
entangled and separable state respectively, compared to ideal theoretical values of
0.5 and 0.25.
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4.6 Discussion

The results presented here allow us to formalize a commonly-held, natural and
accessible notion of entanglement. Taking two separate systems, a random local
operation is applied to each system. Each system is then measured in a local basis.
Our main result simply formalizes the fact that, on average, entangled systems
yield more strongly correlated measurement outcomes than separable systems. Since
our scheme is completely reference-frame independent, we can give this description
without speaking of any explicit choice of measurement operators, waveplate angles,
or even specific states.

A compelling property of this scheme is the beneficial function of Haar-random,
or “white” noise. We see the greatest statistical separation between entangled and
separable states, and thus obtain the most information, when instability in the
channel is Haar-random. Consider the situation illustrated in figure ??. Alice and
Bob must assess the degree of entanglement of Charlie’s state. They are forced
to receive qubits from Charlie over an unstable channel, which is untrusted but
guaranteed to be local (i.e. Û ∈ SU(2) ⊗ SU(2)). In this scenario, there is no
guarantee that the channel is Haar-random — it may even be the case that Charlie
is deliberately manipulating the channel. However, Alice and Bob can effectively
“cancel out” any local operations that may occur on the channel, by deliberately
measuring in a Haar-random basis. It is then vanishingly unlikely that Alice and
Bob will register a large value of T (i.e. T ∼ 0.5), unless Bob truly has access to an
entangled source, or is able to learn Alice and Bob’s choice of measurement setting.
This ability to override unknown noise on a channel using controlled “white noise”,
while still obtaining meaningful information on the source, has obvious practical
implications for the characterization of quantum states and processes. It would be
interesting to consider possible applications outside photonics, where an entangled
state must be observed through a noisy local channel.

Statement of work

All of the experimental data presented here was measured by myself, except for the
density matrix in section 4.5. I conceived the original idea in section 4.5. The proof
of measurement triads, and figure 4.2 are due to my co-authors.
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Chapter 5

Quantum Chemistry on a Photonic

Chip

5.1 Introduction

In previous chapters we have seen that quantum mechanics permits strong nonlocal
correlations which are classically forbidden. It turns out that this makes it very
difficult to engineer a classical digital computer to mimic the behaviour of quantum
systems — it seems very likely that the general problem is classically intractable.
However, we have good reason to believe that a quantum computer should be able
to efficiently simulate most quantum systems of interest.

In this chapter we provide a proof-of-principle demonstration of a new algorithm
for quantum computers that would give precise calculations of chemical energies
and configurations in regimes where classical techniques either fail to give good
answers or require exponential computing power. We first examine existing methods
for the simulation of quantum systems on classical and quantum computers, with
particular focus on quantum chemistry. We then describe our algorithm, and discuss
its distinguishing features with respect to existing techniques. Finally, we use this
algorithm in a two-photon experiment, simulating the Helium Hydride molecule on
the CNOT-MZ chip previously described.
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5.2 Simulating quantum mechanics

In a large laboratory in Washington DC, a robot arm originally designed to spot-weld
car bodies has been installed. Stacked around the walls of the lab are 450,000 micro-
test tubes, each containing a different chemical primitive. 24 hours a day, seven days
a week, this arm, together with a computer vision system, tests prospective drugs
for toxicity and efficacy against human-borne diseases [1]. Drug discovery currently
has a 99.9% failure rate, accounting for a significant proportion of the billion dollars
it takes to bring a new drug to market. The process of discovery of new high-
temperature superconductors, catalysts, and photovoltaics is not far removed from
this trial-and-error approach.

In such fields as mechanical engineering, architecture, microelectronics and aerospace,
the design process can be made almost entirely deterministic owing to the power
of computer models to predict the success or failure of a given design, without the
need for real-world testing. In many cases the computer can itself become the de-
signer, rapidly searching through a large parameter space for optimal geometries or
structures. Why is it that many drugs and new materials are not designed in this
way?

In Simulating physics with computers [2], Feynman describes the intrinsic diffi-
culty of simulating nature, as well as a radical new approach to the problem:

“Nature isn’t classical, dammit, and if you want to make a simulation
of nature, you’d better make it quantum mechanical, and by golly it’s a
wonderful problem, because it doesn’t look so easy.”

Here I will attempt to paraphrase Feynmans argument. Let us define a computer
simulation of some physical system as being efficient when the number of computer
components required (gate operations, memory units and so on) is a polynomial
function of the space-time volume of the physical system of interest. If, on the other
hand, the necessary computational resources scale exponentially with the problem
size, we say that the simulation is inefficient and — if we have any ambition to
tackle progressively larger problems — useless. There is generally speaking a one-
way correspondence between the space or memory required by an algorithm and
its execution time: roughly speaking, if an algorithm really needs an exponential
amount of memory, it will not be able to even address all that data in polynomial
time, let alone solve the problem at hand.

Consider for example the problem of simulating a system of n coins, each of
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which can be found in the state H or T . The system has 2n possible states:

H0H1H2H3 . . . Hn

T0H1H2H3 . . . Hn

. . .

T0T1T2T3 . . . Tn

an exponentially large state space. However, the system only ever occupies one of
these states at a time. Thus the instantaneous state of a system of n coins can always
be efficiently represented by n bits of memory, with a simple one-to-one mapping
H → 0, T → 1.

Coins flips are often used as a source of randomness. Assuming each flip produces
a random output, the expectation value of some function f(X) of n coin flips depends
on the probability distribution over all possible outcomes:

〈f(X)〉 = 〈f(x0x1 . . . xn)〉 =
2n∑
j=1

f(xj)p(xj) (5.1)

where xj is the jth possible outcome of the classical random variableX corresponding
to n coin flips. It may appear at first that in order to simulate such a probabilistic
system of coins, we must represent the full probability distribution P (X) in the
computer’s memory, and compute the behaviour of the system by directly evalu-
ating expectation values of the form (5.1). This would again render the problem
intractable, since P (X) has exponentially many entries. However, if we allow that
the evolution of the computer from state to state can itself be random, then we can
efficiently simulate the physics of coins — simply by exposing bits in memory to a set
of probabilistic operations equivalent to those experienced by the coins themselves.
In some sense, we generate the probability distribution P (X) without explicitly
writing it down. Since the evolution of bits in a deterministic classical computer
can be made approximately random with a polynomial overhead in resources, all
experiments which depend on random coin flips can be efficiently simulated on a
computer.

Now let us consider the problem of simulating a system of n quantum coins,
equivalent to spin-1

2
particles or qubits. Each coin individually may be in an ar-

bitrary superposition state |ψ〉 = α|H〉 + β|T 〉. The state of the full system is in



174

general entangled:

|Ψ〉 = a0|H0H1H2H3 . . . Hn〉 (5.2)

+ a1|T0H1H2H3 . . . Hn〉 (5.3)

. . . (5.4)

+ a2n|T0T1T2T3 . . . Tn〉, (5.5)

where ai are complex probability amplitudes with
∑

i |a2
i | = 1. How should we rep-

resent this state on a classical computer? Naïvely, we can write down the real and
imaginary parts of each ai using 2× 2n floating-point variables, an approach which
is exponentially costly in time and space. Immediately this representation problem
appears hard, but we have previously prevailed in simulating random phenomena,
achieving an exponential advantage over the naïve approach through a simple mod-
ification of the computer. Can we accomplish a similar trick for quantum coins, and
use a classical computer to efficiently represent and evolve the quantum state1?

The first piece of evidence to the contrary is the nonlocal behaviour of quantum
states, described and experimentally tested in sections 1.3.8, 2.8 and 4 of this thesis.
Since quantum states can exhibit correlations which provably cannot be reproduced
by any local classical system, we might expect that it would be difficult to persuade
classical bits in a CPU to accurately mimic the evolution and measurement of the
quantum state. However, this argument does not say anything about scaling —
perhaps such correlations can be emulated, in a completely local way, with a small
(polynomial) overhead?

At this point we head into the territory of (quantum) computational complexity
theory, where a great deal of beautiful work has been done, but much remains to
be proved. In 1995, Peter Shor described [3] a polynomial-time quantum algorithm
for prime factorization. No polynomial-time classical algorithm for prime factoring
exists, and the problem is generally believed to be exponentially hard for classical
computers, although there is no proof. If factoring is indeed outside of P, then a
universal full-scale quantum computer running Shor’s algorithm would constitute a
“physical system of interest”, albeit contrived, which cannot be efficiently simulated
by any classical machine. Further evidence has recently been provided by Aaron-
son and Arkhipov, in their resent proposal for the BosonSampling linear optical
quantum computer, discussed in detail in section 6.3.2. The authors provide very
strong evidence that efficient simulation of the quantum behaviour of single photons

1Note that this question is related to the Extended Church-Turing Thesis, discussed in section
6.3.2 of this thesis.
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in certain classes of linear optical network is classically intractable. This result ar-
guably has stronger implications for the complexity of quantum simulation, as the
implications of a polynomial-time classical algorithm for BosonSampling would
be much more dramatic than the discovery of a fast classical factoring algorithm.

So we end up with a reasonable hunch that the simulation of small things —
molecules, drugs, materials —is sometimes classically intractable, and we can see a
number of bright lights in the darkness which support this understanding. This is not
to say that all quantum systems are intrinsically difficult to simulate classically, for
instance, an n-body system whose state remains separable throughout its evolution
is simulated using the same method as for probabilistic classical systems. Only a
subset of natural phenomena exhibit sufficiently strong quantum correlations as to
be classically intractable. Certain regimes of organic [4] and inorganic chemistry [5],
superconducting materials [6, 7] and quantum magnetism [8], and microbiology, for
instance photosynthesis [9], all fall into this regime. Here we will focus our attention
on problems in the field of quantum chemistry.

5.3 Quantum chemistry

The underlying physical laws necessary for the mathematical theory of
a large part of physics and the whole of chemistry are thus completely
known, and the difficulty is only that the exact application of these laws
leads to equations much too complicated to be soluble. [10]

Paul Dirac, 1929

Quantum chemistry is the experimental and theoretical study of the quantum me-
chanical behaviour of chemicals. The fundamental goal is the ability to compute and
comprehend the properties and dynamics of large molecules, without the need to
directly synthesise and test them in the lab. Owing to the complexity of these cal-
culations, a considerable fraction of this research is dedicated to numerical studies.
The roots of the field lie in the early observations of quantum electronic behaviour
due to Faraday, Kirchhoff, Boltzmann and Planck. Later developments were made
by Linus Pauling, in his famous work on the quantum mechanical nature of the
chemical bond [11], as well as Llewellyn Thomas and Enrico Fermi, to name but a
few.
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5.3.1 Definition of the problem

Let’s assume that we know the chemical composition of a molecule of interest, having
some information on its geometry, the relative positions, masses and charges of the
nuclei, etc. For most chemical systems of interest, the full molecular wavefunction Ψ

can be factorized into electronic and nuclear components via the Born-Oppenheimer
approximation [12]

Ψ = ψe × ψn, (5.6)

after which we assume that the nuclei are stationary and effectively classical, since
they are so much more massive than the electron. The problem then is to solve the
time-independent Schrödinger equation for a system of N nuclei and n electrons

i~
∂

∂t
ψe = Ĥeψe, (5.7)

where Ĥe is the Hamiltonian for the electronic structure problem, which can be
written [13] in second-quantized form as

Ĥe =
∑
ij

hij â
†
i âj +

∑
ijab

hijabâ
†
i â
†
j âaâb. (5.8)

Here â†j and âj are the fermionic ladder operators, which create and destroy electrons
in a molecular spin orbital (“energy level”) j. The first term in (5.8) is due to
the electronic kinetic energy, the second is a result of electron-electron (Coulomb)
interaction.

Analytic solutions to the electronic structure problem exist for small molecules
such as the Hydrogen atom, but in general we must take a numerical approach. The
basic quantity of interest for chemists is usually an energy E = 〈λ0|Ĥe|λ0〉 or energy
difference ∆E, where |λ0〉 is an eigenstate of Ĥ. Frequently we are interested in the
dependence of this energy on some molecular or external degree of freedom:

• How much effort must we exert in order to pull this atom away from the rest of
the molecule? What is the complete form of the interaction potential energy
surface of the molecule as a function of its own configuration?

• How high is the energy barrier that we must overcome in order to persuade
two molecules of interest to react?

• How stable is this compound? How much energy would it take to pull it apart?
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An example of a very simple approximate solution to such questions is the Lennard-
Jones potential,

VLJ = ε

[(rm
r

)12

− 2
(rm
r

)6
]

(5.9)

which approximates the dependence of the interaction potential on the distance
r between two atoms, where ε is the depth of the potential well at r = rm, the
equilibrium bond length of the molecule. Lennard-Jones gives a simple and com-
putationally frugal estimate of the interaction energy, but its approximation breaks
down for a broad variety of chemical systems. For larger, more complex molecules,
quantum chemists depend on more sophisticated models, or ansätze.

5.3.2 Ansätze

The first task in solving problems of the form of (5.7) is to choose a representation,
parametrization or ansatz for the electronic wavefunction Ψe. The molecular orbital
approximation gives a simple ansatz for the molecular electronic structure, in which
the full electronic wavefunction Ψ is written as a separable product of single-electron
molecular wavefunctions ψi:

Ψ(~r1, ~r2, . . . ~rn) =
N∏
i=1

ψi(~ri). (5.10)

known as a Hartree product. Any single-electron molecular wavefunction can be
expressed as a linear combination over a basis set of nbasis atomic orbitals (single-
electron, single-atom wavefunctions) φj,

ψi(~r) =

nbasis∑
j=1

cijφj(~r). (5.11)

In general, the Hartree product (5.10) violates Pauli exclusion, since it is not anti-
symmetric: the expressions ψ(~r1, ~r2) = ψ(~r1)× ψ(~r1) and ψ(~r2, ~r1) = ψ(~r2)× ψ(~r1)

are not the same, and
ψ(~r1, ~r2) 6= −ψ(~r2, ~r1), (5.12)

i.e. the electronic wavefunction does not change sign upon exchange of two elec-
trons. The solution is to antisymmetrize the wavefunction, writing it as a linear
combination of Hartree products

ψ(~r1~r2) =
1√
2

(ψ1(~r1)ψ2(~r2)− ψ2(~r2)ψ1(~r1)) . (5.13)
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Using a method due to Slater [14], we can generalize this ansatz to the n-electron
case, including the electron spin, by writing the full electron wavefunction as an
antisymmetrised (A) product of spin orbitals χi(~ri, ω) ∈ [ψi(~ri)α(↑), ψi(~ri)β(↓)],

Ψ(~r, ω) ≡ Ψ(x) = A{
n∏
i=1

χi(xi)}, (5.14)

which can be neatly written as a Slater determinant

Ψ(x1, x2 . . . xn) = |χ1χ2 . . . χn〉 =
1√
n!

∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) . . . χn(x1)

χ1(x2) χ2(x2) . . . χn(x2)
...

... . . . ...
χ1(xn) χ2(xn) . . . χn(xn)

∣∣∣∣∣∣∣∣∣∣∣
. (5.15)

The Slater determinant provides an elegant ansatz for separable molecular spin
orbitals, which is physical by construction. Note that this is the fermionic equivalent
of the method described in section 1.5.3 to compute bosonic states and statistics
using the permanent per(M). Owing to the fact that states described in this way
do not include any entanglement, every state in the ansatz can be parametrized with
a polynomial number of parameters, the single-electron atomic orbital coefficients cij
in (5.11). We will herein label the real parameters used to address such a subspace
of states as ~φ ≡ cij.

Hartree-Fock

Having chosen an ansatz for the state, the task is then to find the parameter val-
ues ~φ which best satisfy the Schrödinger equation. The variational principle states
that any trial wavefunction (a “guess” at ~φ) will not have an energy less than the
ground state energy E0 of the Hamiltonian. Therefore we can find a good, approx-
imate solution to the Schrödinger equation — the ground state itself — simply by
varying these parameters so as to minimize the energy, in what is known as the
variational method. This technique lends itself to a numerical approach, in which an
iterative nonlinear optimization algorithm is used to minimize the energy of a trial
wavefunction,

E0 = min
~φ
〈Ψ(~φ)|Ĥ|Ψ(~φ)〉. (5.16)

From ~φ, we can then reconstruct full (approximate) information of the electronic
configuration, as well as the ground state energy E0.

The Hartree-Fock-Roothan (HF) method is an iterative, polynomial-time algo-
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Figure 5.1: Schematic of the configuration interaction ansatz — a linear com-
bination of possible molecular spin orbital configurations. When the series is not
truncated, we obtain the full configuration interaction ansatz, which is exact up to
the choice of atomic orbital basis set. However, given the number of orbitals and
electrons in a typical molecule of interest, and the number of permutations thereof,
this encoding is classically intractable for systems of more than & 3 atoms.

rithm which computes an approximate solution to (5.16), yielding the HF ground
state |Φ0〉. Key to the efficiency of this technique are two related assumptions: (i)
that Ψ is separable, allowing it to be expressed as a single Slater determinant, and
(ii) that the Coulomb interaction term in Ĥe is well-described by a mean-field ap-
proximation in which all two-electron contributions are approximated “as well as
possible” by single-electron terms in the same Slater determinant.

HF provides a polynomial ansatz which has been very successful in describing
a broad range of chemical systems, but does not account for electron correlations
or nonseparability. As such this method fails for many physical systems of interest,
including those described in the introduction to this chapter. In an attempt to
remedy this situation, correlated electronic behaviour has been re-introduced to the
ansatz by a number of “post-Hartree-Fock” methods.

Post Hartree-Fock

In the Hartree-Fock method, the electronic configuration wavefunction is approxi-
mately parametrized in terms of a single Slater determinant. A numerically exact,
unscalable, completely general ansatz is given by the full configuration interaction
(FCI) method, illustrated in figure 5.1, in which the entire space of physical elec-
tronic wavefunctions is fully and exactly parametrized using a linear combination
of exponentially many Slater determinants, accounting for all possible (entangled,
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correlated) electronic configurations

Φ0 = |χ1χ2χ3 . . . χn〉 (5.17)

ΨCI = g0Φ0 +
∑
a,i

giaΦ
i
a +

∑
a,b,i,j

gstabΦ
ij
ab . . . (5.18)

where the spin-orbital subscripts (a, b . . .) and superscripts (i, j . . .) mark differences
with respect to the Hartree-Fock ground state. FCI calculations give numerically
exact, optimal solutions, but the number of Slater determinants, and thus the num-
ber of parameters required to describe the state, scales factorially with the number
of electrons. As such, FCI calculations are currently limited to diatomic or triatomic
molecules.

Strongly related to CI methods is the coupled-cluster (CC) ansatz [15]. Configuration-
interaction methods can be made tractable by truncation of the series (5.18). CC
methods provide an improved approach to this truncation, grouping electronic ex-
citations together in the exponential ansatz,

|Ψ〉 = eT̂ |Φ0〉. (5.19)

Here, |Φ0〉 is the Hartree-Fock ground state, which can be efficiently computed as
we have already seen, and T̂ is the so-called cluster operator. The basic technique
is to group k-fold electronic excitations, choosing a cut-off at k = kmax:

T = T1 + T2 + T3 . . . Tnmax (5.20)

where T1 is the single-excitation term, a linear combination of all possible excitations
which raise or lower a single electron from spin orbital a to i,

T1 =
∑
i

∑
a

giaâ
aâ†i . (5.21)

The pair excitation term is more complex, simultaneously raising two electrons from
spin orbitals (a, b) to (i, j)

T2 =
1

4

∑
ij

∑
ab

gijabâ
aâbâ†i â

†
j (5.22)

and so on. In practice, this series is usually truncated at the level of two-particle or
three-particle excitations. By this approximation, the number of parameters used
to describe the state remains polynomial in the system size. Even so, the CC ansatz
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is currently classically intractable for kmax & 3.

We will skip discussion of density functional theory (DFT), an alternative mean-
field theory for quantum chemistry (see [16]). Suffice to say that despite the success
of DFT, as with the HF, CC and truncated CI methods, the approximation that
it uses to achieve scalability leads to incorrect results for a large class of chemical
systems.

5.4 Quantum simulators

We have arrived a situation in which all known exact methods for the simulation of
quantum chemistry are intractable for molecules with more than ∼3 atoms. More-
over, the approximate methods that do scale are only precise for certain classes of
molecule. Hartree-Fock, coupled-cluster, DFT and truncated CI models all break
down at some point. There are examples of surprisingly simple molecules for which
all known approximate methods fail, including the lowly nitrogen N2 molecule, whose
triple bond gives rise to strongly correlated electronic behaviour at high bond sepa-
rations, ozone, and many others. How should we go about simulating these systems
and their larger, more interesting cousins?

If we are serious about efficient simulation of quantum mechanical phenomena in
the lab, then the computer or machine that we use must also be quantum mechan-
ical — this was Feynman’s insight. Throughout his work, Feynman acknowledged
the possibility that the device might not necessarily constitute a universal full-scale
quantum computer. We can imagine a broad variety of special purpose devices,
which perhaps do not even depend on digital quantum logic or gate operations, but
nonetheless emulate or mimic the physics of a classically intractable system of inter-
est in a scalable way. The potential for dramatic relaxation of hardware requirements
(in terms of coherence time, gate fidelity etc.) in this regime, while maintaining a
quantum advantage, has led many to predict that non-universal quantum simula-
tion may constitute the first practical application of large-scale artificial quantum
entanglement.

In this chapter we will only discuss schemes for quantum chemistry which do
make use of a full-scale universal digital quantum computer, and we do not address
special-purpose, non-universal devices. See the discussion of BosonSampling in
section 6.3.2 of this thesis for an experimental and theoretical examination of special-
purpose quantum simulators, as well as recent experimental progress in [8] and [17].
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5.4.1 Quantum simulation on a digital quantum computer

We will now give a picture of the standard approach to quantum simulation on a
universal digital quantum computer. An enormous diversity of methods exist, and
this description will necessarily be approximate and incomplete. We will later com-
pare and contrast this standard method with the technique used in our experiment,
which is quite distinct.

In any computer simulation, we must choose a mapping between the degrees of
freedom of the physical system of interest and the computational hardware. We
have already seen the approach taken in classical quantum chemistry, in which an
ansatz for the electronic wavefunction is expressed in terms of atomic spin orbitals,
the coefficients of which are stored as floating-point numbers in a digital register.
In a quantum computer, quantum information is written into registers of qubits —
distinguishable spin-1/2 systems. Onto this register we wish to encode the state of a
system of n electrons — indistinguishable, antisymmetric fermions, with half-integer
spin. In his original discussion of universal quantum simulators, Feynman expressed
concern over the discrepancy between the fundamental physical properties of these
two systems [2]. How should we reconcile the two?

The Jordan-Wigner transform

Suppose that we have register of N qubits, onto which we would like to map the state
of n electrons. We can dream up many possible encodings, but most of them will
allow us to create or destroy simulated electrons in unphysical ways. For example,
we should not be able create two electrons occupying the same spin orbital, and
annihilation on the vacuum should produce no effect. The essential rules for the
fermionic creation and annihilation operators acting on a mode j are completely
captured by the (fermionic) canonical anticommutation relations (fCCRs):

{âj, â†k} = δjkI (5.23)

{âj, âk} = 0 (5.24)

where {A,B} = AB + BA is the anticommutator [18]. These equations, which
are the fermionic counterpart to the bosonic CCRs (1.101) immediately imply that
{â†j, â

†
k} = 0, and (â†j)

2 = (âj)
2 = 0, the â†â are positive Hermitian with eigenvalues

0 and 1 and are mutually commuting â†j âj â
†
kâk = â†kâkâ

†
j âj, and annihilation on the

vacuum behaves as desired (â|0〉 = 0).

The Jordan-Wigner transform [19, 20] provides exactly such a mapping from
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qubits to fermions in the form of a definition for â†, â in terms of spin operators
acting on qubits which always satisfies the fCCRs. The Jordan-Wigner transform
allows any physical system to be represented on a quantum computer, and thus
forms the basic ingredient for the encodings used in most digital quantum simulation
algorithms [21, 22].

In terms of the Pauli spin operators σ̂i, the fermionic creation and annihilation
operators acting on mode j are defined by Jordan-Wigner as

âj ≡ I⊗j−1 ⊗ σ̂+ ⊗ σ̂⊗N−jz (5.25)

â†j ≡ I⊗j−1 ⊗ σ̂− ⊗ σ̂⊗N−jz (5.26)

where σ+ = |0〉〈1| and σ− = |1〉〈0|. The tall stack of z-rotations (σ̂⊗n−jz , sometimes
referred to as Jordan-Wigner ladder) has has the effect of keeping track of the sign
of the fermionic wavefunction and thus enforcing antisymmetry:

âj|α1, α2, . . . αl〉 = −(−1)s
α
j |α1, α2, . . . αl, with αj → 0〉, (5.27)

where |α1, α2 . . . αn〉 is the occupation number representation of the fermionic state
and sαj ≡

∑j−1
k=1 αk. It is interesting to note that when we make a local change

to the electronic system — creating, annihilating or moving an electron — the
corresponding qubit operator, i.e. the necessary gate operation, is highly nonlocal.

Quantum phase estimation

Having mapped the physics of the chemical system into a digital register of qubits,
the task is then to design a quantum circuit — a sequence of gate operations —
which computes the eigenenergies of the electronic structure Hamiltonian of interest.
Here we provide an approximate picture of the traditional framework, which is based
on the quantum phase-estimation algorithm (PEA) [23, 24].

The PEA takes as input an eigenstate |λ0〉 of a unitary operator Û , and computes
a t-bit approximation to the unknown phase ϕλ0 of the eigenvalue λ0 = e2πiϕλ0 . PEA
is an oracle-based algorithm, and starts from the assumption that the controlled-Û2j

operation can be implemented by a black-box, for arbitrary j, at a constant cost.
The controlled-unitary gates act as

C(Û2k) |+〉 ⊗ |λ0〉 =
1√
2

(
|0〉+ e2πi·2kϕ |1〉

)
⊗ |λ0〉. (5.28)
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Figure 5.2: The PEA computes an t-bit approximation to the phase ϕλ0 of the
eigenvalue λ0 = e2πiϕλ0 of a unitary operator, U , assuming that the eigenstate |λ0〉
is given. If arbitrary exponentiation U2j up to U2t is provided as a black-box ora-
cle, then the PEA can achieve an exponential speedup over classical methods. The
eigenstate is prepared in the system register, and the control register of t qubits
is prepared in the superposition state |+〉⊗t. The system evolves under repeated
application of the oracle unitary, quantum-controlled by qubits in the control regis-
ter. Finally, readout of ϕλ0 is performed by means of the inverse quantum Fourier
transform followed by measurement in the computational basis.

The system register is first initialized in the eigenstate |λ0〉, which is provided as
input to the algorithm. A secondary control register of t qubits is prepared in the
separable equal superposition state |+〉⊗t. We then apply the circuit of controlled-
Û2t operations shown in figure 5.2. The system register stays in the state |λ0〉
throughout the computation, with the full system evolving as

|+〉⊗t ⊗ |λ0〉
PEA1−−−→ 1√

20

(
|0〉+ e2πi·2t−1ϕ|1〉

)
⊗
(
|0〉+ e2πi·2t−2ϕ|1〉

)
. . .

⊗
(
|0〉+ e2πi·20ϕ|1〉

)
⊗ |λ0〉.

(5.29)

The final state of the control register can then be written independently of the
system,

1√
2t

[
|00 . . . 0〉+ e2πiϕ·1|00 . . . 1〉+ . . . e2πiϕ·2t−1|11 . . . 1〉

]
(5.30)

=
1√
2t

2t−1∑
k=0

e2πi·ϕk|k〉 (5.31)

where |k〉 is the state corresponding to the binary representation of k. In the
event that the phase can be exactly written as a binary fraction of t bits ϕ =

0.ϕ1ϕ2 . . . ϕt ≡ ϕ1

2
+ ϕ2

4
+ ϕ3

8
. . . ϕt

2t
, the output state of the first stage of PEA (5.29)
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State preparation Phase estimation

Trotterization Trotterization

Figure 5.3: Ballistic quantum chemistry on a quantum computer. A fiducial state
|0⊗N〉 is adiabatically time-evolved to an eigenstate |λ0〉 of the Hamiltonian of in-
terest. The energy is then read out by means of the quantum phase estimation
algorithm. A significant property of this approach is that although the necessary
number of qubits can be relatively low, the number of fundamental gate operations
which must be consecutively and coherently performed is typically very large due to
the heavy dependence on Trotterization for time-evolution of the state.

can be rewritten as

1√
2t

(
|0〉+ e2πi 0.ϕt |1〉

)
⊗
(
|0〉+ e2πi 0.ϕt−1|1〉

)
. . .⊗

(
|0〉+ e2πi 0.ϕ1ϕ2...ϕt |1〉

)
(5.32)

It is then straightforward to show that the quantum Fourier transform of (5.32) is
a logical basis state corresponding to the digits of ϕ, |ϕ1ϕ2 . . . ϕt〉. The final stage
of the PEA implements this quantum Fourier transform on the control register,
followed by measurement in the logical basis. From these measurement outcomes
the experimentalist reads out the exact digits of ϕ, thereby obtaining the eigenvalue
λ0 of Û in a single shot. Even when ϕ cannot be exactly expressed as a t-bit
binary fraction, the PEA returns the phase to a good approximation, with a success
probability 1 − ε. The choice of t determines the output precision as well as the
probability of success of the PEA.

Quantum chemistry using the PEA

We will now describe a polynomial-time algorithm which makes use of the PEA to
compute exact ground-state energies under the full configuration-interaction ansatz,
following [25, 26]. Starting from the FCI electronic structure Hamiltonian Ĥ (5.8) for
our molecule of interest, we generate the unitary time evolution operator Û = eiĤτ ,
where the energy E = 2πϕ/τ of an eigenstate |λ0〉 is mapped to the phase of its
eigenvalue λ0 = e2πiϕ

Û |ψ〉 = eiĤτ |ψ〉 = e2πiϕ|ψ〉. (5.33)

The task is then to estimate ϕ, and thus E, by means of the PEA. We must first be
able to implement the controlled-Û(τ) operations at the heart of the PEA as gate
sequences in a digital quantum computer. The Trotter decomposition provides a
general prescription for approximate time evolution of arbitrary unitary operators in
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the gate model. The technique bears a strong resemblance to stop-frame animation
[27]. For a Hamiltonian Ĥ =

∑
k hk, the full time-evolution exp(iĤτ) is divided

into M short, time-independent unitary slices of length ∆τ = τ/M ,

Û = eiτ
∑
k hk =

∏
k

[
ei∆τhk

]
+O(∆τ ), (5.34)

a process known as Trotterization. The number of gate operations is at least linear in
t, and the procedure introduces a discretization error polynomial in t. Larger values
ofM and higher-order decompositions both give rise to a smoother “animation” and
less error, at the cost of further gate operations. This error must be within chemical
accuracy (roughly one part in a million) for the computation to be useful. Even for
small molecules, Trotterization to chemical accuracy demands very large numbers
of gates. A conservative implementation of FCI-PEA for the water molecule using
∼ 30 qubits in the system register requires O(104) gate operations per Trotter step,
and M = O(106) steps in the full time evolution, leading to a total of O(1010) serial
gate operations [26] — a formidable challenge.

The PEA provides an efficient method to compute the eigenvalue of a given
eigenstate of Û . However, in the context of quantum chemistry we do not initially
know the eigenstate — in fact, |λ0〉 should be regarded as encoding the answer to our
problem. Efficient classical methods provide an approximate ground state, but the
error in this approximation is the entire motivation to seek a quantum algorithm in
the first place! What happens if we use the approximate Hartree-Fock ground state
|ψHF 〉 instead of the exact eigenstate? Using |ψHF 〉 =

∑
i λi|λi〉 ≈ |λ0〉 as input to

the system register, we find [24] that the PEA outputs the exact phase ϕ of |λ0〉
with probability proportional to |〈λ0|ψHF 〉|2. Thus in some cases, an approximate
eigenstate can be used to find the exact energy of the ground state, at the cost of a
lower probability of success.

This method has been used for ground state estimation in numerical simulations
of H2O [26, 28] and LiH [28], as well as a recent experimental demonstration for H2

using photonic qubits [29]. Unfortunately, for many chemical systems of interest,
the Hartree-Fock approximation performs so badly that the probability of success
vanishes. As a result, the state preparation problem in quantum simulation of
quantum chemistry can become very involved. Methods to overcome this issue
largely depend on adiabatic eigenstate preparation algorithms [28, 30] in which the
Hamiltonian is slowly transformed from an “easy” Hartree-Fock Hamiltonian ĤHF to
the exact, full-configuration interaction Hamiltonian ĤFCI . These methods again
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depend on Trotterization for the implementation of time-evolution under a time-
dependent Hamiltonian, incurring a similar or greater cost in the number of required
gate operations.

We thus arrive at a ballistic picture of quantum algorithms for quantum chem-
istry resembling that shown in figure 5.3, in which the process is broadly subdivided
into (i) preparation of qubits in a simple fiducial state |0〉⊗N (ii) adiabatic or itera-
tive PEA state preparation and (iii) PEA readout of the energy. A key property of
this approach is that while the number of qubits N can be relatively small — PEA is
amenable to a recursive modification which allows chemically relevant calculations
to be performed using ∼ 10 control qubits and ∼ 30 system qubits — the number
of basic gate operations required is typically enormous.

5.4.2 Limitations of quantum simulators

Arguably the most important task for in any scalable algorithm for quantum chem-
istry is the choice of ansatz. The most general ansatz, which captures the full space
of possible states of the system and maps to the full Hilbert space H upon which
the quantum state is defined has dimension O(2n) and can only be parametrized
by an exponential number of real parameters. Efficient classical algorithms must
therefore throw away an exponentially large subspace of H . The most successful
ansätze do this in a targeted way, discarding highly entangled or extremely strongly
correlated states — which do not often appear in nature — while preserving the
most chemically relevant regions of H .

The Hilbert space dimension of n qubits and that of n electrons occupying a
system of spin orbitals are both exponential in n and are of the same order. We
have seen from the Jordan-Wigner transform that the physics of these two systems
can be made isomorphic, and from this it might be natural to infer that a quantum
computer should be able to implement a complete ansatz, addressing the entirety
of H . The counter-argument to this reasoning is simple: we need to be able to
drive the quantum computer. That is, any machine which allows us to prepare or
represent states throughout the entirety of H must by definition have a number
of classical control parameters — knobs — exponential in n, and is therefore not
scalable. Quantum computers must have a polynomial number of knobs on top, and
as such can only access a polynomially small subset of efficiently preparable Hilbert
space. Arbitrary n-qubit state preparation does not scale.

Ground-state quantum chemistry problems are a subset of the k-local Hamilto-
nian problem, i.e. the problem of finding the ground state of a Hamiltonian on n
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qubits, Ĥ =
∑
i = 1rĥi where r = poly(n) and each ĥi acts on at most k qubits.

The general k-local Hamiltonian problem has been proven [31] by Kempe, Kitaev
and Regev to be QMA-complete for k ≥ 2. QMA-completeness means that problem
is at least as hard as any in QMA, and since QMA contains BQP, the complexity class
accessible in polynomial time by quantum circuits, the (k ≥ 2)-local Hamiltonian
problem is exponentially hard for quantum computers. This implies that there exist
polynomial-size ground state problems in quantum chemistry that are intractable
even on a quantum computer.

If all of the above is true, why should we bother to build a quantum computer for
quantum chemistry? Despite the apparent difficulty of building a digital quantum
simulator, a small fraction of which we have outlined outlined above, we nonetheless
expect that such devices should provide an exponential speedup over classical ma-
chines for large classes of interesting physical and chemical systems, enabling FCI
quantum chemistry in polynomial time. That said, it would be nice if we could do
it without the need for quite so many gate operations. The next section presents
our work in this direction.

5.5 Quantum simulation without quantum evo-

lution

We will now describe an alternative approach by which quantum chemistry cal-
culations can be performed on a hybrid quantum-classical processor without time
evolution or quantum phase estimation. This approach introduces a number of
new unknowns, but significantly reduces the number of required gate operations
by means of a variational approach with a strong resemblance to certain classical
methods in quantum chemistry.

5.5.1 Scheme

Any Hamiltonian can be written as a sum of tensor products of Pauli matrices

Ĥ =
∑
iα

hiaσ̂
i
a +

∑
ijab

hijabσ̂
i
a ⊗ σ̂

j
b + . . . (5.35)

for real h, where (a, b . . .) index the three Pauli operators {σ̂x, σ̂y, σ̂z} and (i, j . . .)

index the subspace of qubits upon which they act. In general this expansion has
exponentially many terms, but for all physical Hamiltonians (including electronic
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Figure 5.4: Quantum simulation without time-evolution. (a) Classical approaches
to quantum chemistry often make use of the variational method. An approximate
ansatz is chosen for |ψ〉, allowing a subspace of H to be represented in the CPU. The
ansatz parameters ~φ are initialized according to some approximate method, and a
nonlinear optimization algorithm then iteratively minimizes the energy of the state
under the chemical Hamiltonian. We propose a hybrid quantum-classical analog
to this approach, in which a small quantum processor (QPU), likely constructed
from a universal gate set, is used in place of the CPU to implement the ansatz
and compute energies (red box) while the optimization algorithm still runs on a
classical processor (blue box). (b, c) Various classical ansätze exist to efficiently
parametrize small subspaces of the electronic configuration Hilbert space. A QPU
cannot scalably address the full Hilbert space, but should nonetheless give access
classically intractable ansätze.

structure Hamiltonians (5.8), the Ising model, Heisenberg model etc.) it can be
truncated to a number of terms which is polynomial in the size of the system.
The basic intuition for this fact is that arbitrarily strong, arbitrarily long-range
interactions do not appear in nature.

Calculations in quantum chemistry are generally concerned with the energy E =

〈Ĥ〉 = 〈ψ|Ĥ|ψ〉 of a state |ψ〉 under the Hamiltonian Ĥ. By linearity, this is given
by

E = 〈ψ|Ĥ|ψ〉 =
∑
iα

hia〈ψ|σ̂ia|ψ〉+
∑
ijab

hijab〈ψ|σ̂
i
a ⊗ σ̂

j
b |ψ〉+ . . . (5.36)

Thus the energy reduces to a weighted sum over a polynomial number of expectation
values of local Pauli observables, and can be precisely estimated by means of repeated
local single-qubit measurements together with classical floating-point addition. For
an N -qubit state, we can thus efficiently evaluate the expectation value of a 2N×2N

Hamiltonian.

In classical methods for quantum chemistry, as we have already seen, the ground
state energy of the chemical Hamiltonian is generally found by an iterative vari-
ational method, in which a nonlinear optimization algorithm is used to minimize
the energy with respect to the parameters |φ〉 of a scalable ansatz for the state.
The electronic configuration of the molecule is approximately represented in the
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digital logic of the central processing unit (CPU) by means of an approximate, scal-
able ansatz f(~φ) = |ψ(~φ)〉. This restricts the CPU to a small subspace of H . The
ansatz parameters ~φ are initialized according to a guess or approximate method, and
the energy 〈ψ(~φ)|Ĥ|ψ(~φ)〉 is evaluated by a numerical method. The optimization
algorithm then attempts to iteratively drive towards the ground state.

We propose a hybrid quantum-classical analogue to this approach, illustrated
schematically in figure 5.4. Rather than a CPU, we make use of a small quantum
processor (QPU), constructed from the universal gate set, to implement the ansatz
and evaluate the energy of candidate ground states. The QPU takes as input some
real parameters ~φ, and prepares a state |~φ〉 in a qubit register of the device. Copies
of this state are then measured in a number of local Pauli bases — corresponding
to terms in (5.36) — from which the energy is recovered by classical floating-point
addition. The optimization process, which updates the ansatz parameters ~φ based
on the current energy, is then performed classically on the CPU.

We have already seen that existing efficient classical ansätze are limited to de-
scribing certain classes of chemical systems. By representing the trial wavefunction
on a quantum device, although we can still only parametrize a polynomial subspace
of H , the expectation is that we should nonetheless be able to efficiently imple-
ment different class of ansätze for which no efficient classical algorithm exists. In
particular, there is reason to believe that efficient parametrization of highly cor-
related, entangled electronic configurations should be more efficient using a QPU
than a CPU. A simplistic argument for the existence of such ansätze is as follows:
Consider a quantum circuit, parametrized by a number of classical control phases
and constructed somehow at random from a universal gate set. It is then reasonable
to believe that the chance of finding an efficient classical parametrization of the
output state |ψ(~φ)〉 should be vanishingly small. Hence it is likely that there exist
a large number of classically intractable ansätze which can be implemented using
exponentially fewer resources on a QPU. The development of such ansätze remains
an open problem in quantum simulation.

5.5.2 Advantages

Quantum chemistry using the PEA promises full-configuration-interaction calcula-
tions using relatively few qubits but requires an imposing number of gate operations,
due in part to the Trotterization overhead required for time evolution. Our approach,
although limited to an approximate ansatz, provides variationally optimal solutions
without dependence on Trotterization, time-evolution, or the PEA. The number of
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gate operations, and hence the necessary qubit coherence time or the physical size
of the device, is thus dramatically reduced with respect to PEA. Note that in our
algorithm, the QPU repeatedly prepares a state under the ansatz and immediately
measures it in a local basis, destroying all quantum coherence — this is the entirety
of the “quantum” stage of computation. In contrast, the PEA must remain coherent
throughout. A recent numerical investigation [26] into FCI-PEA computation of the
ground state energy of iron sulfide Fe2S2 estimated the required calculation time —
which, for a ballistic computation, is equivalent to the required coherence time —
to be 1.5 years.

By implementing a large fraction of the total computation on a classical proces-
sor, we ensure that the use of quantum resources is limited to the operations where
they give the greatest advantage, i.e. in the representation of quantum states. The
trade-off with respect to the PEA is that we no longer have ballistic, single-shot
computation, since the classical optimization algorithm must make a large number
of calls to the QPU before convergence to the ground state is achieved.

5.5.3 Scaling

A single call to an n-qubit QPU prepares |ψ(~φ)〉 and returns the expectation value of
a tensor product of Pauli operators. The gate cost of the state preparation stage is
dictated by our choice of ansatz, which is not predetermined — we assume that we
will always choose an ansatz with a known decomposition into a polynomial number
of gate operations, without explicitly defining this choice.

The measurement stage can be parallelized, giving an estimate of a single term
in (5.36) with precision p in after O(|h|2/p2) repeated measurements of copies of the
state. This leads to a total readout cost O(|hmax|2M/p2) to evaluate the energy of
a trial state |ψ〉 under the full Hamiltonian, where M is the number of terms in the
expansion (5.36).

5.5.4 Open questions

In an ideal world, having chosen a classically intractable class of chemical systems
of interest, we would then design a QPU which addresses the subspace of H in
which they live. While PEA-based methods provide an explicit prescription for the
necessary gate-model circuit, much less is known when it comes to the deterministic
design of circuits which efficiently parametrize the approximate ansätze required
for our algorithm. This currently limits the scope of our method, and restricts our
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ability to assess its asymptotic performance.

Further uncertainty arises as a result of the use of nonlinear numerical opti-
mization. How many calls to the QPU will it take for the classical minimization
to traverse the quantum energy landscape and converge to the ground state? How
will the choice of optimization algorithm affect the precision in E? These questions
depend in turn on the choice of ansatz and the nature of the chemical Hamilto-
nian. In our experimental demonstration (section 5.6) we use a general-purpose op-
timization algorithm (Nelder-Mead simplex, fminsearch in Matlab / scipy.fmin in
Python). Despite experimental imperfections this algorithm performed well on a re-
alistic chemical Hamiltonian, converging to the ground state to acceptable accuracy
after a few hundred iterations. There is scope for considerable optimization in the
choice of this optimization algorithm, and we expect that existing techniques from
“classical” quantum chemistry should be directly applicable to our scheme. This is
not to say that the optimization will always run in polynomial time, and thus the
scalability of our approach remains an open question.

An interesting problem for all quantum simulation algorithms is raised by the
intractability of full quantum state tomography. Although our algorithm and PEA-
based methods both prepare the approximate ground state, from which the ground-
state energy can be efficiently obtained, we cannot recover full information on the
eigenstate vector — in order to do so we would need an efficient classical parametriza-
tion of the state, which presumably does not exist for those chemical problems which
demand quantum simulation. Similarly, we cannot obtain the full spectrum of the
Hamiltonian, since in general it has exponentially many eigenvalues. Therefore,
through quantum simulation we can at best hope to obtain partial information on
the eigenstates of classically intractable Hamiltonians, for instance measuring ex-
pectation values of some operator of interest other than the Hamiltonian, or partial
information on the spatial configuration of a molecule. The design and optimization
of such readout methods will be an important problem for future implementations
of our algorithm.

5.6 Experiment

We have performed a proof-of principle experimental demonstration of this method,
using the CNOT-MZ device previously described. Since the CNOT-MZ permits
arbitrary 2-qubit state preparation as well as arbitrary measurement in a local Pauli
basis, it is an ideal test-bed for our algorithm. The fact that the chip is fully
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Figure 5.5: (a) A single optimization run, finding the ground state energy of HeH+

for a specific molecular separation, R=90pm. Coloured points show the experi-
mentally computed energy as a function of the optimization step, where the colour
corresponds to the tangle of the 2-qubit state, estimated directly from |φ〉. Red
lines show the four eigenenergies of the FCI Hamiltonian of HeH+ in a minimal
basis. Crosses correspond to a theoretical ideal value of the energy, computed at
each optimization step. (b) Experimentally measured bond dissociation curve of
HeH+, analogous to the approximate Lennard-Jones potential. Each point corre-
sponds to the ground state energy of the Hamiltonian Ĥ(R) for a particular value
of the atomic separation R, and is obtained from a single optimization run as shown
in (a). The red line shows the theoretical curve, and grey points show experimental
data prior to correction for a small systematic error. (c) is a magnified region of
(b), demonstrating that our experimental setup can resolve the dip in the curve,
corresponding to the equilibrium bond length of the molecule.

computer-controlled allows the optimization feedback loop to be performed without
human intervention, which is important when a single run of the experiment can
involve thousands of unique measurement settings.

The ability to prepare two-qubit states (section 2.2.7) allows us to investigate
4×4 Hamiltonians. It is interesting to draw comparison with the recent experimental
demonstration by Lanyon et al. [29], in which two photonic qubits were implemented
in a bulk optical setup. In this work the authors make use of a more orthodox PEA-
based algorithm and as such are forced to use one qubit as the control register which
leaves room for a 2× 2 Hamiltonian only.

We chose the helium hydride ion HeH+ as the chemical system of interest for
this demonstration. Helium hydride is the strongest known acid, and was likely
the first molecule to form in the universe after the big bang. The second-quantized
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Hamiltonian for the two-electron system of He− H+ can be expressed as a 4 × 4

matrix using a minimal atomic basis set (STO-3G). The coefficients hiα . . . in the
expansion of the Hamiltonian were calculated by means of an FCI method in the
PSI3 ab-initio computational chemistry package [32]. Note that this approach is not
scalable in general, and is used here for convenience only. The mapping from qubits
to fermions is performed using the Jordan-Wigner transform, as described in section
5.4.1.

In our experimental implementation, owing to the small size of the circuit used,
we choose as an ansatz the full-two qubit Hilbert space, which has 6 free parameters.
This provides a robust test for the performance of the optimization algorithm, but is
not at all scalable. Future demonstrations will need to implement a scalable ansatz,
the design of which remains an open problem.

Figure 5.5(a) shows experimental data from a typical optimization run, with the
energy converging to the ground state after ∼ 100 iterations of the algorithm. We
studied the degree of entanglement of the two-qubit state as a function of time during
the optimization run, using as a metric the tangle T = C2, where C is concurrence
(1.40). For the case of HeH+ we found that while the algorithm does pass through
regions of strongly entangled Hilbert space during the optimization run, the qubit
representation of the final electronic ground state was generally only very weakly
entangled. The nature of the Jordan-Wigner transform is such that there is not
necessarily a correspondence between the degree of entanglement of the fermionic
state and that of its qubit representation.

Writing the HeH+ Hamiltonian as a function of the atomic separation R,

Ĥ =
∑
iα

hia(R) σ̂ia +
∑
ijab

hijab(R) σ̂ia ⊗ σ̂
j
b + . . . (5.37)

we repeated the optimization process for several values of R, thus obtaining the
bond dissociation curve shown in figure 5.5(b, c). This curve is analogous to the
Lennard-Jones potential previously described. The equilibrium bond length — the
atomic separation of the molecule in its relaxed state — was measured to be R =

92.3±0.1 pm, with a corresponding ground-state electronic energy of E = −2.865±
0.008 MJ/mol. Here the error bar is due only to Poissonian finite statistics, and
does not take into account error introduced by other experimental imperfections
or the convergence of the optimization algorithm. The experimental data in figure
5.5 correspond to tens of thousands of unique measurements on two-photon states
generated by the CNOT-MZ, and as such represent the most demanding application
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of the device to date.

5.7 Discussion

In this work we have simulated the HeH+ molecule using a single two-qubit gate
together with a handful of single-qubit rotations. By comparison, the PEA-based
FCI method for an equivalent Hamiltonian, without adiabatic state preparation,
would require at least 12 CNOT operations. By dispensing with the need for PEA,
Trotterization and time evolution, our algorithm enables much more chemistry to be
done with much less quantum hardware, and dramatically reduces the necessary co-
herence time. In doing so, however, we introduce new unknowns. In particular, it is
not clear whether the optimization algorithm will necessarily converge in polynomial
time. Furthermore, we have not provided a deterministic technique by which a given
polynomially-sized ansatz may be parametrized in terms of a quantum circuit — a
fundamental requirement for both theoretical analysis and practical implementation
of our algorithm.

Statement of work

My main contribution in this section was in the optimization and maintenance of
the CNOT-MZ chip, together with theoretical analysis of the work. Figure 5.5 is
due to Alberto Peruzzo, who also measured the data.



196



Bibliography

[1] Michael S, Auld D, Klumpp C, Jadhav A, Zheng W, Thorne N, Austin CP,
Inglese J, and Simeonov A. A robotic platform for quantitative high-throughput
screening. Assay Drug Dev Technol, 5:637–57, 2008.

[2] R. P. Feynman. Simulating physics with computers. Int. J. Theor. Phy. Theor.
Phy., 21:467–488, 1982.

[3] P. W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. arXiv:quant-ph/9508027, August 1995.

[4] R. Babbush, A. Perdomo-Ortiz, B. O’Gorman, W. Macready, and A. Aspuru-
Guzik. Construction of Energy Functions for Lattice Heteropolymer Models: A
Case Study in Constraint Satisfaction Programming and Adiabatic Quantum
Optimization. arXiv:1211.3422, November 2012.

[5] G. J. Halász, A. Perveaux, B. Lasorne, M. A. Robb, F. Gatti, and Á. Vibók.
Simulation of laser-induced quantum dynamics of the electronic and nuclear
motion in the ozone molecule on the attosecond time scale. Phys. Rev. A,
86:043426, Oct 2012.

[6] P. W. Anderson. The resonating valence bond state in la2cuo4 and supercon-
ductivity. Science, 235(4793):1196–1198, 1987.

[7] R. Moessner, S. L. Sondhi, and P. Chandra. Two-dimensional periodic frus-
trated ising models in a transverse field. Phys. Rev. Lett., 84:4457–4460, May
2000.

197



198

[8] J. W. Britton, B. C. Sawyer, A. C. Keith, C.-C. J. Wang, J. K. Freericks,
H. Uys, M. J. Biercuk, and J. J. Bollinger. Engineered two-dimensional Ising
interactions in a trapped-ion quantum simulator with hundreds of spins. Nature,
484:489–492, April 2012.

[9] M. Sarovar, A. Ishizaki, G. R. Fleming, and K. B. Whaley. Quantum entangle-
ment in photosynthetic light-harvesting complexes. Nature Physics, 6:462–467,
June 2010.

[10] Dirac. Proceedings of the Royal Society of London. Series A, Containing Papers
of a Mathematical and Physical Character, 123, 1929.

[11] L. Pauling. The nature of the chemical bond, volume 2. Cornell, Univ. Press,
New York, addison-wesley edition, 1939.

[12] Max Born and J. Robert Oppenheimer. On the quantum theory of molecules.
Annalen der Physik, 389:457—484, 1927.

[13] I. Kassal, J. D. Whitfield, A. Perdomo-Ortiz, M.-H. Yung, and A. Aspuru-
Guzik. Simulating Chemistry Using Quantum Computers. Annual Review of
Physical Chemistry, 62:185–207, May 2011.

[14] J. C. Slater. The theory of complex spectra. Phys. Rev., 34:1293–1322, Nov
1929.

[15] Isiah Shavitt and Rodney J Bartlett. Many-Body Methods in Chemistry and
Physics: MBPT and Coupled-Cluster Theory. Cambridge, 2009.

[16] Wolfram Koch and Max C. Holthausen. A Chemist’s Guide to Density Func-
tional Theory, 2nd Edition. Wiley, 2001.

[17] T. Fukuhara, P. Schauß, M. Endres, S. Hild, M. Cheneau, I. Bloch, and
C. Gross. Microscopic observation of magnon bound states and their dynamics.
arXiv:1305.6598, May 2013.

[18] Michael A Nielsen. The fermionic canonical commutation relations and the
jordan-wigner transform.

[19] P. Jordan and E. Wigner. über das paulische äquivalenzverbot. Zeitschrift für
Physik, 47(9-10):631–651, 1928.

[20] G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme. Quantum algorithms
for fermionic simulations. Phys. Rev. A, 64:022319, Jul 2001.



5. BIBLIOGRAPHY 199

[21] R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme. Simulating
physical phenomena by quantum networks. Physical Review A, 65(4):042323,
April 2002.

[22] D. S. Abrams and S. Lloyd. Simulation of Many-Body Fermi Systems on a Uni-
versal Quantum Computer. Physical Review Letters, 79:2586–2589, September
1997.

[23] A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi. Classical and Quantum Compu-
tation. Amer Mathematical Society, 2002.

[24] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quan-
tum Information (Cambridge Series on Information and the Natural Sciences).
Cambridge University Press, 1 edition, January 2004.

[25] J. Whitfield, J. Biamonte, and A. Aspuru-Guzik. Simulation of electronic struc-
ture Hamiltonians using quantum computers. Molecular Physics, 109:735–750,
March 2011.

[26] D. Wecker, B. Bauer, B. K. Clark, M. B. Hastings, and M. Troyer. Can quantum
chemistry be performed on a small quantum computer? arXiv:1312.1695,
December 2013.

[27] Ollie Johnston. The Illusion of Life: Disney Animation. Disney Editions, 1981.

[28] Alán Aspuru-Guzik, Anthony D. Dutoi, Peter J. Love, and Martin Head-
Gordon. Simulated quantum computation of molecular energies. Science,
309(5741):1704–1707, 2005.

[29] B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida,
I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-
Guzik, and A. G. White. Towards quantum chemistry on a quantum computer.
Nature Chemistry, 2:106–111, February 2010.

[30] Seth Lloyd. Universal Quantum Simulators. Science, 273:1073–1078, 1996.

[31] J. Kempe, A. Kitaev, and O. Regev. The Complexity of the Local Hamiltonian
Problem. arXiv:quant-ph/0406180, June 2004.

[32] http://www.psicode.org/.



200



Actually, if we wanted to, although it’s expensive, we could
put detectors all over [. . . ] and build up the whole curve
simultaneously. . .

Feynman

Chapter 6

Increased complexity

6.1 Introduction

A survey of the literature reveals a rich history of experiments in which p photons
are sent through an optical circuit with m modes. The experimentalist looks to
see where the photons went, examining spatio-temporal correlations using an array
of single-photon detectors, in an effort to determine whether the experiment is (i)
working properly and/or (ii) doing anything interesting.

In general, the number of possible detection patterns across m modes grows as(
m
p

)
, and can be extremely large even for modest values of m and p. It is therefore

often convenient or even essential to use a greater number of detectors d ≤ m

than photons, allowing
(
d
p

)
patterns to be monitored simultaneously. True number-

resolving single photon detectors (section 1.6.4) are not currently widely available.
However, number-resolving detection can instead be achieved using multiplexed non-
number-resolving detectors, again demanding the ability to operate and monitor
many detectors in parallel.

In this chapter we describe experiments using ≤5 photons in ≤21 modes, leading
to tens of thousands of possible events. In order to efficiently assess the physics and
performance of these experiments we need a detection system akin to a camera,
capable of recording and correlating events across many detectors in parallel. To
this end, we have constructed a novel detection system using 16 Si APD single
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photon detectors, supported by electronics and hardware capable of simultaneously
monitoring all possible p-fold detection events up to p = 16 in real-time. Owing to
the capacity of this machine to efficiently photograph quantum states with very large
Hilbert space dimension, we euphemistically refer to it as a Hilbert space telescope.
This system has so far enabled at least three experiments which otherwise would
not have been possible, two of which are described in this section1.

In section 6.3 we describe experiments using up to five photons in structured
and unstructured interferometers, designed to implement both quantum walks and
the so-called BosonSampling problem. We reconstruct time-correlated images
of the multiphoton output state of these devices, observing a clear signature of
generalized bosonic bunching in Hilbert spaces of up to ∼50,000 dimensions. We
make use of this capability to test two unique approaches to efficient verification of
BosonSampling.

6.2 Time-correlated Single Photon Counting

In multiphoton experiments we are frequently presented with the problem of measur-
ing correlation functions in space or time, based on detection events over d detectors.
Very often, this problem reduces to the counting of coincidences. By postselecting
on events in which p detectors fired within some small coincidence time-window ∆t,
we record only those events in which all p photons were generated in the same down-
conversion event or femtosecond pulse, preserving temporal indistinguishability and
thus high-visibility quantum interference.

Certain experiments require more precise timing information. For example, the
pulse envelope of a laser or the delay introduced by a coaxial cable can be mea-
sured using the closely related techniques of temporal autocorrelation and cross-
correlation. Here, the exact time of each detection event is measured and recorded
with very high (fs) precision by a fast clock. The recorded arrival time of a single
detection event is referred to as a time-tag. The autocorrelation function G(τ) of
continuous time-varying signal I(t)

G(τ) = lim
T→∞

1

2T

∫ T

−T
I(t) · I(t+ τ)dt (6.1)

provides information about similarity of the signal with a delayed version of itself,

1The third, completed very recently, is described in a pre-print [1] due to Matthews et al.
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while the cross-correlation function between two signals I1,2(t)

G12(τ) = lim
T→∞

1

2T

∫ T

−T
I1(t) · I2(t+ τ)dt (6.2)

measures the similarity between these signals as a function of the delay between
them. When counting discrete photon detection events with finite timing resolution,
the signal is no longer analog and we instead compute the discretized quantities

G(t) =
∑
t

N(t) ·N(t+ τ) ; G12(τ) =
∑
t

N1(t) ·N2(t+ τ) (6.3)

where Ni(t) is the number of photons detected in channel i and timebin t. These
functions can be easily computed from measured timetags.

6.2.1 TCSPC Hardware

In all of the multi-photon experiments described here, silicon-based avalanche pho-
todiode single photon detectors (APDs) have been used for detection. A number
of alternative single photon detector technologies are described in detail in section
1.6.4 of this thesis. Upon absorbing a single photon within the frequency band
to which the APD is sensitive (∼ 500 to ∼ 900 nm), a 3.3V trigger/timing logic
(TTL) voltage pulse is generated with finite probability — typically ∼ 60% for the
Perkin-Elmer APDs used here.

The task of TCSPC is then to count and correlate these TTL pulses in time.
The rate of single-photon detection is typically on the order of MHz, and many stan-
dard data acquisition systems do not have sufficient bandwidth, channel count, or
timing resolution to capture and correlate events at this rate. As a result, TCPSC
largely depends on dedicated high-speed electronics falling into one of two categories.
pure coincidence-counting systems, often based on nuclear instrumentation module
(NIM) logic or field programmable gate arrays (FPGAs), and time-to-digital con-
verters, which convert incoming TTL pulses into high-resolution digital timetags to
be processed downstream.

The counting systems used in chapters 2, 3, 4 and 5 of this thesis are custom-built
around Xilinx Virtex 5 or Spartan 6 FPGAs. These devices provide a lithographically-
fabricated array of ∼ 105 logic units (gates), which can be reconfigured to implement
dedicated coincidence counting logic with much greater bandwidth and timing sta-
bility than can be achieved using general-purpose ICs. These systems are built to
count instances of O(10) possible coincidence patterns over ≤ 8 independent chan-
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nels, with a fixed coincidence window of 5 ns, and do not provide high-resolution
timing information — instead simply reporting the number of events for each pat-
tern over a fixed integration time of 1 s.

6.2.2 DPC-230

The DPC-230 is a 16-channel photon correlator, produced by Becker and Hickl
GmbH. It is principally designed for multiphoton fluorescence spectroscopy and bio-
logical imaging, however we have adapted it for applications in quantum photonics.
The principal functionality of interest is the capability of the DPC-230 to time-tag
incoming TTL pulses on 16 independent channels simultaneously with ∼ 80 ps reso-
lution, allowing coincidence counting using an array of 16 Si APDs. The instrument,
which is packaged as a PCI card for installation in a standard PC, uses 16 CMOS
time-to-digital converters (TDCs) to record the absolute arrival time of TTL pulses.

The design and interface of the DPC-230 are focussed on multiphoton spec-
troscopy and biological imaging, and the device is largely configured for off-line
analysis of small samples — a few seconds of photon time-tag data. It is not intended
for real-time use, and does not provide coincidence counting as built-in functionality.
For instance, all time-tag data must be written to a hard disk and post-processed
before it can be used, and all of the documentation and bundled software are written
with this mode of operation in mind. However, in the context of quantum photonics
the experimentalist needs both real-time operation, providing immediate feedback
when working in the lab, as well as the ability to integrate for days or weeks at a
time in multiphoton experiments where the n-fold detection rate is extremely low.
We therefore built a custom hardware/software stack which addresses these issues,
providing coincidence counting functionality and allowing the DPC-230 to be oper-
ated in realtime, accumulating up to ten million photon time-tags per second, for
months at a time.

The internal architecture of the DPC-230, together with the custom PC
hardware/software stack, is shown in figure 6.1. Two TDC chips, each having 8
independent TDC channels, are synchronized by a stable clock. These convert TTL
pulses generated by single photon detectors into 24-bit timetags, encoding the chan-
nel number and absolute time of arrival of each pulse, down to a bin width of 82.3
ps. These timetags are temporarily stored in first-in-first-out (FIFO) buffers, each
of which is capable of storing ∼ 2× 106 photons. This data is read into RAM in the
host PC over a standard PCI bus.
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Figure 6.1: Two groups of eight Perkin-Elmer Si APDs send TTL pulses via MCX
coaxial cable to the DPC-230 TCSPC (time-tagging) board. The DPC-230 uses
two 8-channel TDC chips, which time-tag the rising edge of incoming pulses with
ps resolution. These timetags are stored in one of two FIFO buffers, each of which
can store 2 million photons at a time. Coincidence counting and control is managed
by three processes running in parallel on a quad-core desktop computer. The first,
highest-priority process sequences time-tagging and periodically reads timetags from
the PCI bus into one of two RAMDisks, operating in a double-buffered arrangement.
This process also communicates via RS-232 with other high-priority hardware such
as the Ti:Sapphire laser and SMC100 motor controllers. While this process is acquir-
ing timetags, coincidence counting is performed on older data in a parallel process.
Optimized C code merges data from TDC1 and TDC2 and then counts/stores all 216

possibleN -fold coincidence events, up toN = 16, with a variable top-hat coincidence
window (typically 5ns). This stage also implements 16 arbitrary software-defined
delays, allowing path length differences and APD idiosyncrasies to be accounted for.
Finally the count rates are filtered and summed according to the users request, and
plotted in a real-time GUI.

At high photon count rates (up to 1 × 107 photons/second), around 30MB of
timetag data is acquired per second. Since for multiphoton experiments we must
often continuously integrate for a number of days, it is essential that this data
is processed in real-time so that unmanageably large volumes of timetags do not
accumulate. In order to achieve maximum throughput we use two high-priority
processes, written in optimized C and running on separate cores of a Pentium Core
i7 CPU to implement data acquisition and post-processing/coincidence counting in
parallel. Timetags are acquired to the DPC-230’s internal FIFOs for one second,
and are then read into one of two RAMDisk buffers by the data-acquisition process.
This data is passed to the post-processing thread, which merges data from the two
TDC chips and then counts and stores instances of all possible p-fold coincidences
up to p = 16, with a user-specified coincidence window. Above a net detection rate
of ∼ 1× 106 photons per second, this process takes slightly longer than one second
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Figure 6.2: The sheer amount of information generated by the DPC-230 demands
new approaches to data processing and analysis. (a) An array of 16 Perkin-Elmer Si
APDs. (b) 36 cross-correlation curves, acquired in a single 2-second measurement.
The red curve shows a typical cross-correlation function. The time between peaks
corresponds to the repetition rate of the Ti:Saph, i.e. ∼ 12.5 ns. Detector jitter is
the predominant source of broadening of the peaks, giving a FWHM of ∼ 1 ns. (c)
105 Hong-Ou-Mandel dips measured in parallel over a single actuator scan, using a
type-II pulsed SPDC source and the DPC-230.

to process one-second’s worth of timetag data. The data acquisition thread must
therefore wait for the post-processing thread to “catch up”, resulting in a reduced
duty cycle and a linear decrease in the effective n-fold detection efficiency. The
system is routinely used at a throughput of ∼ 5× 106 photons/s.

In order to avoid storing integrated count-rates for all 216 possible events, we
exploit the sparsity of the data — 5-fold events and above are very rate — and write
only nonzero countrates to disk. Despite the significant saving in disk space provided
by this sparse format, it was necessary to further optimize the representation of post-
processed data by means of a custom binary file format, which stores coincidence
data together with information pertaining to the motor controllers, laser, and other
metadata. This file format is described in detail in Appendix A. Finally, this data
is sent to a graphical user interface, running in a third process, where it can be
graphed, filtered and analysed by the experimentalist.

User interface

A bad craftsman blames her tools, but correlation is not causation — we may not
infer that a person who blames their tools is unskilled. With the rapid increase in
the complexity of experimental apparatus and the volume of data generated by tools
such as the DPC-230, we must take greater care over the interface between the hu-
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(a) (b)

Figure 6.3: (a) Realtime interface, showing motor controller and laser status, and
coincidence count-rates. Inset - delay control. (b) Delay solver. The left-hand panel
shows 16 cross-correlation curves, measured in parallel across 16 detectors. The peak
at the center of each curve corresponds to two-fold coincidences due to photon pairs
generated by the source. The right-hand panel visualizes the relationship between
these cross-correlation curves and solves for the optimal delay configuration.

man being and their experimental setup. When actively developing and optimizing
apparatus in the lab, the importance of responsive control and immediate, intuitive
feedback cannot be understated.

We have built a graphical user interface (GUI), shown in figure 6.3(a), which
enables experimental control, real-time analysis, post-processing, and management
of coincidence data from the DPC-230. This GUI also interfaces with SMC100 motor
controllers and the Coherent Chameleon Ti:Sapphire laser. The user can choose an
arbitrary subset of detection events of interest, including number-resolved patterns
under a variety of pseudo-number-resolving schemes, to be displayed and graphed in
real-time. This interface also controls the integration time, coincidence window and
software delays, and allows arbitrary sequences of measurement and automation to
be scripted.

Delays

Synchronization of delays is an important consideration when coincidence-counting
with large numbers of detectors. For example, digital pulse-conditioning logic inside
the Perkin-Elmer APD assembly, together with variation in cable and free-space
path lengths, can introduce up to ∼20ns of delay between detection of a photon and
arrival of the corresponding TTL pulse at the TDC. We must therefore introduce
artificial delays into “early” channels, ensuring that timetags due to photons gener-
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ated within the same downconversion event or laser pulse fall within the coincidence
window of the counting logic. Traditionally, this has been accomplished using rack-
mounted delay boxes, which simply switch between fixed lengths of coaxial cable.
The optimization of these delays has typically been performed by a process of trial
and error on behalf of the experimentalist. With many more detectors to deal with,
this optimization process becomes very time consuming.

These issues can be mitigated by making direct use of timing information pro-
vided by the DPC-230. First, physical electronic delay boxes are no longer required,
since all delays can be implemented in software — simply by shifting timetags from
each channel by some user-specified time ∆t. Secondly, the task of finding op-
timal delay configurations has been almost entirely automated. Switching out of
coincidence-counting mode, we acquire timetags for ∼ 10 s and then compute cross-
correlation functions (6.2) between all possible pairwise combinations of channels.
These G12 curves are analyzed by a physically-inspired optimization process which
automatically finds the optimal delay configuration with minimal input from the
user — see figure 6.3(b). This capability has been essential for the multiphoton
experiments described in section 6.3, where frequent changes in the detection setup
required regular re-calibration of delays.

6.3 Multiphoton quantum interference

All experimental work in this thesis has so far been performed in a qubit encoding.
Although we have studied two photons in up to 6 modes — a system with 21 unique
configurations — we have only been interested the four two-qubit states |00〉 . . . |11〉,
and we have postselected on detection events which fall in that subspace. This has
allowed us to directly exploit the majority of the established language and theory of
quantum computation, much of which is written in terms of qubits i.e. in the circuit
model. In particular, we have made use of proofs of universality and scaling such as
those of KLM (1.6.2) to guide our experimental design. The fact that the literature
should be so focussed on qubits is not surprising — as with a classical computer,
any finite d-dimensional qudit encoding can be efficiently and exactly represented
in terms of two-level systems, which often have advantages in terms of simplicity of
analysis and hardware efficiency2.

At present, the major bottlenecks for the development of universal LOQC are

2In a circuit model architecture, replacing qubits with d-level systems has been shown to give a
modest multiplicative log2 d advantage in the number of gate operations [2] and facilitate controlled-
Û operations [3].
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the lack of deterministic, scalable sources of indistinguishable photons, and the dif-
ficulty of optical-frequency adaptive measurements. Although work is under way to
develop deterministic sources in a variety of architectures (see section 1.6.3), current
technology is very much “pre-threshold”, and experiments which go beyond four pho-
tons remain challenging. On the other hand, with the advent of integrated quantum
photonics, modes are comparatively cheap — reconfigurable silicon photonic devices
with hundreds of waveguides are readily available [4].

Perhaps we can obtain a greater computational return per photon, at least in
the short term, by dispensing with the circuit model and making direct use of a
larger number of optical modes? Taking a simple example, if our basic resource
is 5 photons, then using the 2p modes that are minimally required to encode p
independent qubits, we generate a Hilbert space on qubits of dimension 25 = 32. If
on the other hand we inject the same 5 photons into a device with 25 modes, we
generate a Hilbert space with dimension 118,775. Naïvely, we might expect that it
is in general hard to classically compute the effects of quantum interference in such
scenarios. Moreover, it is not obvious that this computational advantage should
depend on adaptive measurements, and the associated problem of GHz feed-forward,
required for universal LOQC. The price we pay for this experimental convenience
is the guarantee of universality provided by KLM and others — see section 1.5.4
— but it is nonetheless conceivable that we might retain an exponential quantum
speedup for specific tasks.

As well as an alternative approach to photonic quantum computation, this sec-
tion also introduces a new attitude towards quantum interference. Even when study-
ing fundamental physical phenomena such as entanglement and nonlocality (for ex-
ample in chapters 4 and 5), we have so far treated photonic quantum interference as
a resource which powers the CNOT-P gate, rather than a basic physical phenomenon
of interest. In this section we will demonstrate complex multiphoton quantum in-
terference effects which have not previously been observed and are of basic scientific
interest in their own right, irrespective of potential practical applications.

Large-scale experiments of this form can currently only be implemented in a
controlled way using the technology previously described: first, the ability to build
intrinsically stable multi-path interferometers on a monolithic chip, and second, a
detection system capable of efficiently acquiring a detailed picture of the full output
state. The theoretical framework described in section 1.5.3 will also be indispensable
for the numerical simulation and verification of experimental results.

The variety of possible linear optical networks which can be constructed from
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beamsplitters and phase-shifters is infinite. Here we will consider two extrema: the
most structured and least unstructured nontrivial interferometers. In the first case,
we construct linear, symmetric arrays of uniformly coupled waveguides. Using these
devices, we implement quantum walks of up to five photons, which continuously
tunnel back and forth between neighbouring waveguides in the array. In the un-
structured case, we use Haar random circuits, chosen uniformly at random from the
space of all possible interferometers. A recent result by Aaronson and Arkhipov [5]
has shown that multiphoton experiments using randomized interferometers of this
type are very likely to be classically intractable, even without feed-forward. We
experimentally test various aspects of this scheme, referred to as BosonSampling,
using up to 3 photons. Finally we discuss the problem of verification and valida-
tion of BosonSampling machines, and experimentally demonstrate the potential
utility of quantum walks in this context.

6.3.1 Quantum random walks

Galton’s board

A Galton board is constructed by hammering nails into a board so as to form a
regular lattice, as shown in figure 6.4. The board is mounted vertically, and a ball
is dropped from above. Upon striking each pin the ball bounces at random, either
to the left or the right. Each row of the lattice corresponds to a discrete timestep,
and we are usually only interested in the ball’s lattice site k on the current row,
rather than its exact position in space. The ball is said to take a random walk
through the lattice, and is referred to as a walker. Random-walk dynamics appear
throughout nature, from Brownian motion and neuroscience to the hunting tactics
of sharks [6] and humans [7]. Moreover, random walks form the basis for a number
of randomized classical algorithms, including graph connectivity [8] and machine
learning3. Interestingly, the best-known approximate polynomial-time algorithm
for the permanent (see section 1.5.3) of a nonnegative real matrix, due to Jerrum,
Sinclair and Vigoda [10], makes use of a random walk. A random walk is a Markov
chain, as the instantaneous stochastic dynamics of the walker do not depend on the
past trajectory or history4.

The time evolution of the ball in a Galton board is discretized. At a given
3In fact, a classical random walk was used as part of a machine learning algorithm to optimize

the performance of the CNOT-MZ chip [9].
4Note that the momentum of the ball in the Galton board gives the system some memory of

past states, and the system is therefore only approximately Markovian.
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Figure 6.4: Classical and quantum random walks. (a) A ball takes a classical ran-
dom walk through the pins of a Galton board. The probability that the ball lands
at a given lattice site is binomially distributed. (b) The state space of a walker
can be represented as a graph, whose vertices and edges correspond to lattice sites
and allowed trajectories of the walker, respectively. (c) A single quantum walker
injected into a discrete array of continuously-coupled lattice sites undergoes a quan-
tum walk, continuously tunnelling to neighbouring sites. The wavefunction spreads
ballistically, and interferes with itself to create wavelike patterns in the probability
distribution. This numerical simulation also shows reflection of the wavefunction at
the edge of the lattice. (d) The dynamics of a single walker can be reproduced clas-
sically, for instance using water waves. However, if two indistinguishable walkers
are simultaneously injected into adjacent modes we obtain quantum interference,
leading to generalized bosonic bunching which has no classical analog. Photon pairs
are more likely to be detected at nearby sites, i.e. on the main diagonal of the
correlation matrix. (e) Injecting three photons into adjacent sites, we observe the
higher-order equivalent of (d), where photons are again clustered on the main di-
agonal. In general, the correlation matrix of p photons can be represented as a
p-dimensional hypercube.

timestep, corresponding to one row of the board, the walker bounces to a neigh-
bouring lattice site — either to the left or the right, with equal probability. After
nt timesteps, there are

(
nt
k

)
possible routes that the walker might have taken to

arrive at a site k. The probability that the walker arrives at the kth site is therefore
binomially distributed,

P (k) =
1

2n

(
nt
k

)
(6.4)

where the centre of the distribution corresponds to the starting site k0. This be-
haviour is shown in figure 6.4(a).
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Quantum walks

At any given time, a classical random walker occupies a single site k in the lattice.
What happens if we instead use a quantum walker, able to occupy a coherent su-
perposition state |ψ〉 =

∑m
k=1 dk|k〉 over many lattice sites k? There are many ways

to construct such quantum-mechanical analogues of Galton’s board, all of which
fall under the banner of quantum walks. All quantum walks have in common the
fact that the walker is a quantum particle, and that the stochastic evolution is de-
scribed by a lossless (unitary) process. Most quantum walks are characterised by a
time-independent or periodic Hamiltonian with a regular, local, graph-like structure.

A number of basic phenomena distinguish quantum walks of a single particle
from classical random walks. First, the probability distribution over sites, an ex-
ample of which is shown in figure 6.4(c), is qualitatively more complex than that
of classical particles, owing to interference of the wavefunction with itself. This
interference pattern often features two prominent ballistic lobes of high probability,
whose distance from the origin is a linear function of the evolution time. A quan-
tum walker thus traverses the lattice faster than a classical particle, in the sense
that after fixed amount of time we are more likely to detect the quantum particle
at a greater distance from the origin.

Quantum walks provide a generic, simple model of quantum dynamics, and as
such have found a broad range of practical applications. Quantum walks have been
used to model natural quantum phenomena including photosynthesis [11] and ex-
citon dynamics [12], and form the basis of a variety of quantum algorithms for
problems including search [13–15], verification of matrix products [16], evaluation
of balanced binary game trees [17], and computation of a broad class of general
formulas [18]. Moreover, quantum walks have been shown to provide a basic prim-
itive for universal quantum computation [19, 20] — an idea which can be traced
back to Feynman, who describes a computer with a time-independent Hamiltonian
in Simulating physics with computers [21].

Continuous-time quantum walks of photons

All quantum walks can be categorized as being either continuous time or discrete-
time. The discrete-time quantum walk [22–24] is perhaps the closest quantum an-
cestor of a Galton board. The system evolves in discrete timesteps, during which
the evolution of the state of the walker is described by a fixed unitary operator Ŵ .
By analogy with Galton’s nail, Ŵ places the walker into a coherent superposition
of leftward and rightward motion, resulting in a superposition (usually balanced)
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over lattice sites at the next timestep. The time evolution of a discrete quantum
walk is then generated by repeated application of Ŵ , with |ψ〉out = Ŵ nt |ψ〉in after
nt timesteps.

In this work we are instead concerned with continuous-time quantum walks
[25, 26], which do not share such a strong analogy with Galton’s board. Discrete
and continuous-time quantum walks have been shown to be equivalent in the limit
of an infinitely small timestep [27]. Rather than using instantaneous splitting op-
erations, a continuous-time walk creates a constant opportunity for a walker at a
particular site to leak or tunnel into some subset of other sites in the lattice. This
opportunity, or coupling, has an associated strength which is related to the rate at
which probability amplitude moves between a particular pair of connected sites.

More formally: the state of a single walker in a lattice with m sites k =

{1, 2 . . .m} can always be written in a basis {|1〉, |2〉 . . . |m〉}

|ψ〉(t) =
m∑
k=1

bk|k〉 =
m∑
k=1

bkâ
†
k|0〉 (6.5)

where |k〉 is the state of a walker in the kth site, with a corresponding creation
operator â†k. Following Childs et al. [25], the connectivity of the lattice can be
represented as a graph G, whose vertices and edges correspond to lattice sites and
site-to-site couplings respectively. For the simple example of the Galton board, G is
a 1-D linear graph with nearest-neighbour couplings, as shown in figure 6.4(b). Any
G — and therefore any lattice — can be written as an m×m generator matrix M ,
where an element Mij corresponds to the coupling strength between sites i and j of
the lattice.

To see the physical meaning of these couplings, we first examine a classical
continuous-time random walk. Let Pi(t) be the probability of finding the walker
at site i and time t. If two sites i, j, are coupled with a strength Mij, then it
is reasonable to think that the rate of change of probability at a site should be
proportional to both the coupling strength and the probability distribution over all
adjacent sites:

dPi(t)

dt
=

m∑
j=1

MijPj(t). (6.6)

To a first approximation, this reproduces the results of Galton’s board — in partic-
ular, since Pi are positive real numbers, no interference effects are seen.

For quantum states, time evolution is governed by the Heisenberg equation
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(1.20), and a quantum walker prepared at site i evolves according to

i
dâ†i (t)

dt
=
[
â†i (t), Ĥ

]
. (6.7)

We can then model analogous dynamics to (6.6) for a single quantum walker by
choosing a Hamiltonian in the interaction picture

Ĥ =
m∑

i,j=1

Mij â
†
i âj. (6.8)

where we have set ~=1, leading to

i
dâ†i (t)

dt
= −

m∑
j=1

Mij â
†
j(t). (6.9)

Terms on the diagonal of M can be interpreted as coupling a site to itself, encour-
aging the walker to stay at a particular site.

Integrated photonics provides a particularly simple route to the implementation
of continuous-time quantum walks. Arrays of straight, parallel, evanescently coupled
waveguides can be lithographically fabricated in a variety of material systems, pro-
viding a compact, interferometrically stable lattice upon which a walker, in the form
of coherent laser light or single photons, can move. Each waveguide then represents
a site in the lattice, and the time parameter corresponds to longitudinal distance z
in the array, with t = z/(nc) where n is the refractive index of the material. The
Mi 6=j correspond to the strength of evanescent coupling between adjacent pairs of
waveguides, which can be precisely controlled as described in section 2.2.2. Since
the evanescent field of a single mode waveguide falls off exponentially with distance
(section 1.5.1), the coupling strength between next nearest-neighbour waveguides is
exponentially weaker than that of nearest-neighbours, and can usually be neglected.

A number of experiments report the use of laser-written waveguides in 3-D ar-
chitectures to implement walks on highly-connected graphs [28, 29]. Moreover, the
Reck-Zeilinger scheme described in section 1.5.4 of this thesis allows graphs with
any connectivity to be experimentally implemented in a 2-D waveguide structure.
However the majority of implementations, including those reported in this thesis,
use a 2-D nearest-neighbour array, leading to a 1-D lattice such as that shown in
figure 6.4(b). Each site is then coupled to at most two nearest neighbours, giving a
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simple tridiagonal form for the generator:

Mij =


γij, if |i− j| = 1 ,

βi, if i = j,

0, otherwise.

→



β1 γ12 0 0 0 0 0

γ12 β2 γ23 0 0 0 0

0 γ23 β3 γ34 0 0 0

. . .

0 0 0 0 0 γm−1,m βm


, (6.10)

where γij are evanescent couplings with γij = γji and βi are waveguide propagation
constants. The Hamiltonian for a single particle on a 1-D lattice is then

Ĥ =
N∑
j=1

βj â
†
j âj + γ(j,j−1)â

†
j−1âj + γ(j,j+1)â

†
j+1âj1 . (6.11)

A waveguide array with a fixed length z is then described by an m × m unitary
operator Û , which acts on the single-particle Hilbert space H 1

m and is equivalent to
the transfer matrix Λ

Λ↔ Û = e−iĤz/nc ; |ψ〉out = Û |ψ〉in (6.12)

which under the assumption of zero loss completely characterises the device.

Quantum walks of a single particle have now been reported in a variety of physical
systems including cold atoms [30], ions [31, 32], and nuclear magnetic resonance [33],
as well as a large number of optical implementations [34–36]. Single-photon quantum
walks have been used to simulate the band structure of strained graphene [28] and
the relationship between decoherence and the quantum/classical boundary [37].

In optical single-particle quantum walks, the walker is either implemented using
a single photon or a single beam of coherent laser light. In the absence of two-
photon quantum interference, the dynamics are thus described by a classical wave
theory (see section 1.5) and both classical and quantum light sources give identical
detection probabilities. In other words, the interference pattern in figure 6.4(c) can
be exactly reproduced using water waves. This implies that these experiments and
associated algorithms can be simulated on a digital computer with an overhead at
most polynomial in the system size [38]. Thus no quantum algorithm based on a
single-particle quantum walk provides any more than a polynomial (likely quadratic
[22]) speedup over a classical computer, and all such algorithms can be simulated
with a constant O(1) scaling using classical wave computers. The only exceptions
to this rule are oracle-based algorithms, for example the result of [39].
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In order to see quantum walk behaviour which is not explained by a classical
wave model, we must introduce multiple contiguous walkers to the lattice [40]. The
first experimental demonstration [41] used photon pairs generated by SPDC together
with an array of 21 uniformly coupled SiOxNy waveguides. This work has since been
extended, using entangled photons to simulate fermionic statistics [42], as well as
observation of two-photon time evolution [29]. A number of recent demonstrations
have used laser-written waveguides to implement discrete-time walks of two to three
indistinguishable photons [43–45], including walks in 3-D structures [46]. Quantum
walks of two interacting magnons have also recently been observed, using cold atoms
trapped in a linear lattice [47].

Let’s consider a 1-D array of uniformly coupled waveguides, such as that used by
Peruzzo et al. [41]. Measuring the twofold coincidence count-rate between single-
photon detectors at output ports i and j, we can plot a correlation matrix (figure
6.4(d)), showing the probability of coincidental detection of photons in any given
pair of waveguides (i,j). We find that indistinguishable photons are very likely to be
detected either at the same site, or at adjacent waveguides. Specifically, we observe
two clouds of probability density, centred about the main diagonal (i = j) of the
correlation matrix, corresponding to events in which both photons are detected in
the same half of the array. Events in which the photon pair is split across the array
(off-diagonal terms in the correlation matrix) are suppressed.

This effect is a generalized form of two-photon quantum interference (section
1.5.3), and has no classical analogue. For the case of m = p = 2, for example, we
recover exactly the situation of Hong, Ou and Mandel. Intuitively, this effect can be
thought of as a consequence of the known tendency of photons to bunch together.
It should be noted that in a two-photon quantum walk, in contrast with HOM
interference at a 50:50 BS, it is not always the case that both photons are detected at
exactly the same site. The observed increase in probability of coincidental detection
at nearby but not identical sites will be referred to here as clouding, to distinguish
from Hanbury-Brown-Twiss (HBT)-style bunching — it is not clear that the two are
equivalent.

In order to calculate states and probabilities in multi-particle walks, we make
direct use of the method outlined in section 1.5.3. To re-iterate, any p-photon
amplitude or probability can be expressed as the permanent of a p × p submatrix
of the m ×m transfer matrix Λ. As we have already seen, Λ is equivalent to the
single-particle unitary time evolution operator Û (6.12), which is a direct function
of the single-particle Hamiltonian (6.11). This is the origin of the nomenclature of
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M as a generator, since it is a relatively small m×m matrix operating on H 1
m which

is used to generate Ĥ and Û on the much larger multi-particle Hilbert space H p
m,

which has dimension
(
m+p−1

p

)
.

How hard is it to simulate such highly-ordered quantum walks of many indistin-
guishable photons? Looking at figures such as those shown in 6.4, we might expect
that by exploiting the apparent structure of the probability distribution we should
be able to efficiently predict the outcome of such experiments using a classical algo-
rithm. Indeed, there have been tentative theoretical efforts to approximately model
such distributions in terms of Bessel functions [48]. However, our best known exact
methods depend on the calculating the permanent, which in general is exponentially
hard. Detailed discussion of these issues, in a slightly different context, is given in
the next section.

6.3.2 BosonSampling

Imagine a computer which can be built in the real world. The extended Church-
Turing thesis (ECT) says that any such apparatus can be efficiently simulated by a
probabilistic Turing machine — “Time on all reasonable machine models is related
by a polynomial.” [49]. While the standard Church-Turing thesis (section 2.1)
has been all but proven for practical purposes [50], the ECT has been significantly
weakened by the prospect of quantum computing. The idea that some machines
might be fundamentally classically intractable is uncomfortable, and the veracity
of the ECT remains the subject of intense debate [51]. It is reasonable that this
debate should be serious: before making any large financial investment in quantum
computing research, we should first ensure that the problems of interest cannot be
efficiently solved using classical computers5.

Shor’s algorithm constitutes the best-known challenge to the ECT. A machine
running Shor’s algorithm could not currently be simulated in polynomial time. How-
ever, Shor’s algorithm does not yet render the ECT untenable, as it has not been
proven that factoring is classically intractable, i.e. outside P. Moreover, even if
Factoring 6⊂ P, it may still be the case that undiscovered new physics or decoher-
ence phenomena render the construction of a scalable quantum factoring machine
fundamentally (as opposed to practically) impossible (see, for example [52]).

Can we find experimental evidence against the ECT? It would arguably be very
convincing if we could build a universal, fault-tolerant quantum computer capable
of significantly out-performing a classical computer at problems such as prime fac-

5The ECT is not sufficiently well-posed to ever be formally disproved, only weakened.



218

toring. Although great progress has been made, the largest number factored so far
using a quantum computer is 21 [53]6. In contrast, the current recommended RSA
key length (i.e. the size in bits of a composite number whose prime factorization is
considered classically intractable in the near-term) is L = 2048. To run Shor’s al-
gorithm on this key would require O(L2) logical qubits, which after error-correction
would likely correspond to billions of coherent components [55]. Even if we could
build such a machine7, we would also need to prove that factoring is hard in order
to strike a blow against the ECT.

As discussed in chapter 5, exact simulation of quantum chemistry and supercon-
ducting materials is currently classically intractable. Non-universal quantum simu-
lation, which is likely to be technologically less demanding than universal quantum
computing [56], is believed to provide an exponential quantum speedup in some in-
stances and would represent a challenge to the ECT. However, this approach suffers
from the same burden of proof as Shor’s algorithm: it is even harder to formally
prove that such problems are classically intractable.

BosonSampling, proposed in 2010 by Scott Aaronson and Alex Arkhipov [5],
attempts to solve the problems of theoretical proof and experimental difficulty out-
lined above. Although BosonSampling holds for any noninteracting boson, for
simplicity we will only consider photons. We can then define the problem:

Build an m-mode interferometer A, whose transfer matrix Λ is chosen
uniformly at random from the space of all possible interferometers (i.e.
by the Haar measure, section 1.3.1). Place a detector at the output
of each mode, and inject p .

√
m indistinguishable photons to different

input ports of the circuit. BosonSampling is the problem of generating
a single detection event, sampled from the probability distribution B over
all possible p-fold detection events.

The device, consisting of an interferometer together with p photons andm detectors,
is referred to as a boson computer. We have already shown in section 1.5.3 of this
thesis that each element of the probability distribution B can be computed as a
permanent of a p × p submatrix of Λ. The core result of [5] is to show that,
given certain very reasonable conjectures, fast approximate classical algorithms for
BosonSampling would have very dramatic and unlikely consequences for existing
models of computation:

6or 143, depending on how you define “quantum computer” [54].
7A CPU containing in excess of a billion nanoscale transistors can be bought for less than £10.
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Suppose there exists a classical algorithm which takes as input a descrip-
tion of a boson computer A and an error bound ε, and samples from an
approximate distribution B′ such that ||B − B′|| ≤ ε, in poly(|Λ|, 1/ε)
time. Then GPE×, which is a #P-hard problem, is solvable in BPPNP.
[5]

Here GPE× is the problem of estimating the permanent of a matrix of complex
Gaussian random numbers X ∼ N p×p

C to multiplicative ±ε · p! error, with high
probability. In 1979 it was proven by Valiant [57] that calculation of the perma-
nent is #P-complete, and an exact fast algorithm would imply P = NP. Here,
#P is the class of problems which count the solutions of decision problems in NP.
Polynomial-time approximate randomized algorithms for the permanent of certain
classes of matrix exist — for example those due to Jerrum, Sinclair, and Vigoda [10]
(real, positive matrices) and Gurvitz [58] (complex matrices with atypically large
permanents), but no known algorithm achieves the generality, precision and success
probability demanded by BosonSampling. Much of the work of [5] is to provide
evidence that GPE× — i.e. approximate estimation of the permanent of a random
complex matrix — is #P-hard, and to prove that if so, a fast classical BosonSam-

pling machine would imply P#P = BPPNP, collapsing the polynomial hierarchy (P,
NP, coNP etc.) to an extent that would have far-reaching implications, not least
rendering postselected8 classical computers as powerful as postselected quantum
computers (BPPpath = PostBQP).

Arguably, BosonSampling provides even stronger evidence against the ECT
than Shor’s algorithm. If Factoring turns out to be in P, although existing public-
key cryptography would be broken, we would not have to modify our existing models
of computation. If on the other hand BosonSampling has an efficient classical
algorithm, then a generic, foundational assumption of basic computation complexity
theory would fall.

At the same time, in practical terms BosonSampling is a weaker than Shor’s
result. Factoring is a problem with known real-world applications, while Boson-

Sampling does not have any such known use. It is important to emphasize that a
BosonSampling machine does not allow one to compute the permanent, only to
sample from B. A necessary condition for the proof is that m & p2, in which case
each element of B is exponentially small in p. We therefore cannot simply run the
machine many times in order to well-estimate a particular entry in B.

8Allowing postselection on exponentially unlikely outcomes for both quantum and classical
machines.
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From an experimental point of view, the most compelling feature of BosonSam-

pling is the relative ease with which an advantage over existing classical machines
can be achieved. Rapid scaling in p, together with a number of experimentally
convenient properties, renders BosonSampling a leading candidate for the first
experimental quantum speedup over classical computers. Specifically:

• The exponential difficulty of classical BosonSampling scales particularly
fast. In numerical simulations, using an optimized implementation of the
fastest known exact algorithm9 for the permanent [59], we find that for p > 6

(with m = p2) full calculation of B becomes practically impossible on a single
GHz CPU. It is reasonable to think that experiments with & 20 indistinguish-
able photons in & 400 modes will begin to challenge even for existing super-
computers. 8-photon experiments have been reported using photons generated
by SPDC [60].

• BosonSampling depends on high-visibility quantum interference, but, in
contrast with KLM, does not require adaptive measurement or feed-forward
— techniques which, at optical frequencies, remain experimentally very chal-
lenging.

• Given the fidelity with which linear-optical networks and single-photon detec-
tors can be constructed, it is not necessarily the case that BosonSampling

machines require error correction (section 1.4.1), although this remains an
open question (see, for example, ref [61]).

Let’s assume that we have a BosonSampling machine with p > 20. How can
we verify that the machine is truly implementing BosonSampling, and that exper-
imental imperfection has not caused it to output a classically tractable distribution?
The success or failure of Shor’s algorithm can be easily checked in polynomial time
by simply multiplying the prime factors. All problems in NP have this promise,
however, the output of problems in P#P cannot necessarily be checked in polyno-
mial time. Indeed, the original proposal of BosonSampling suggests that efficient
verification might be fundamentally impossible.

An intuitive argument was recently given by Gogolin et al. [62], who consider
the problem of distinguishing a BosonSampling machine, which samples from B,
from a fake, classical uniform-sampler, which samples p-fold clicks from the flat
distribution F : Pi = 1/d ∀ i. Since Λ is Haar-random, B is roughly uniform. More-
over, when m & p2, B is spread roughly uniformly over exponentially many possible

9Benchmarks and optimized Cython code for the permanent are given in appendix A.



6. Increased complexity 221

Ti:Saph

(c) Random unitary

(b) Quantum walk
TCSPC

Fibre splitters

16 SPADs

Downconversion

(a) Photon source (d) Detection system

Attenuator

Upconversion

Lens PBS BBO HWP PR IF DM

PMF

Figure 6.5: Experimental setup to generate (a), interfere (b,c) and detect (d) single
photons. (a) 780nm laser light from a 140fs pulsed Titanium:Sapphire laser was
attenuated with a HWP and a PBS, before frequency doubling with a type-I BBO
nonlinear crystal. The subsequent 390nm light was reflected from four DMs and
focused onto a type-I BiBO nonlinear crystal to generate double pairs of photons
through spontaneous parametric down conversion. After passing through an IF,
photons are reflected off a prism (PR) and collected into polarisation maintaining
fibres which are butt-coupled, via a V-groove fibre array, to either (b) the QW chip,
or (c) the RU chip. Outgoing photons are coupled from the chip using a second fibre
array, either directly to 16 APD detectors (d), or via a network of fibre splitters.
Detection events are time-correlated and counted using a 16-channel TCSPC.

detection patterns. It might therefore appear that B should be well-approximated
by F . Indeed, the authors show that without knowledge of Λ, the experimentalist
would need to obtain an exponential number of samples from a machine under test
before they could distinguish B — generated by a “real” BosonSampling machine
— from F . If the purpose of BosonSampling is to provide experimental evidence
against the ECT, this is a serious problem.

Previous experimental implementations of BosonSampling have used up to
four indistinguishable photons, together with randomized interferometers constructed
using optical fibre [63], lithographically fabricated waveguide chips [64] and laser-
written waveguides [65, 66]. These early demonstrations have largely focussed on
verification of the relationship between measured statistics and permanents of Λ. In
our experimental work we have instead attempted to address the more recent ques-
tions of verification and validation of BosonSampling, including the potential role
of quantum walks in this problem.
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6.3.3 Experiment

We have performed three and four-photon experiments, using photonic chips to im-
plement both quantum walks (QW) and Haar-random BosonSampling unitaries
(RU). Throughout our experimental work, we have focussed on characterisation of
the bosonic clouding effects described in section 6.3, the problems of BosonSam-

pling verification outlined in section 6.3.2, and the potential relationship between
the two.

A full schematic of the experimental setup is shown in figure 6.5. A multi-photon
type-I SPDC source (section 6.3.3) is coupled into PMF fibre. These fibres are butt-
coupled to the input ports of either the QW (section 6.3.3) or RU (section 6.3.3)
chip. Photons are then coupled out of the chip and detected/correlated using the
counting system previously described, together with an array of fibre splitters for
pseudo-number resolving detection (section 6.3.3).

Multiphoton source

The photon source used in this experiment, illustrated in figures 6.5 and 6.6(a), is
based on type-I down-conversion (section 1.6.3) in the pulsed regime. A Ti:Sapphire
pulsed laser (Coherent Chameleon Ultra II ) generates 144 fs FWHM pulses at 780nm,
with a repetition rate of 80MHz. The average output power is ∼ 3.7W, with peak
power in excess of 300 kW. This light is attenuated using a zero-order HWP to-
gether with a Glan Taylor high-power PBS, and is upconverted to 390nm using a
2mm-thick BBO, phase-matched for colinear second-harmonic generation (SHG).
This pump beam is cleaned of 780nm light using four DMs and is then focussed to
a waist of ∼ 40 µm on a 2mm-thick BiBO crystal phase-matched for type-I down-
conversion, generating photon pairs at 780nm on a cone with 3◦ opening angle. The
pump is then removed using a DM together with a band-pass IF (Semrock Max-
Line, λ0 = 780nm, ∆λ = 3 nm, transmission ∼ 95%). Four prisms, together with
precision alignment stages and aspheric lenses, are used to couple downconverted
light from the four compass points of the downconversion cone (0◦ N, 90◦E, 180◦ S,
270◦ W) into PMF.

Our goal is to use this source to generate states of three and four photons where
no two photons share the same mode — i.e. the Fock states |111〉 and |1111〉. This
is motivated by the fact that, for quantum walks, the observed dynamics are more
diverse when photons are injected into separate modes, as photons injected at the
same mode tend to stick together. Similarly, for BosonSampling, detection prob-
abilities due to state components with more than one photon per mode (either at the
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input or output of the device) have repeated rows and columns in the corresponding
submatrix of Λ, making classical estimation of the permanent less computationally
demanding.

This source simultaneously generates the SPDC state (1.168) at both the N/S
and E/W compass points of the cone. This can be modelled as two independent
downconversion processes, and is more easily visualized as simultaneous SPDC at
two independent crystals as shown in figure 6.6(b). Assuming the filters, collection
optics, and geometry are symmetric across all four modes, we can write the output
state as

|Ψ〉 = |ψ〉nsSPDC ⊗ |ψ〉
ew
SPDC (6.13)

=
[
|0n0s〉+ ei(φn+φs)γ|1n1s〉+ e2i(φn+φs)γ2|2n2s〉

]
⊗
[
|0n0s〉+ ei(φe+φw)γ|1e1w〉+ e2i(φe+φw)γ2|2e2w〉

]
+ h.c. (6.14)

where the phases ~φ arise due to differences in path length between the each collection
stage and the BiBO crystal. These free-space optical paths are not phase-stabilized,
and therefore fluctuate randomly with temperature and acoustic noise in the lab.
In this work we are principally concerned with the four-photon subspace of (6.14),

|Ψ(~φ)〉4 =
1√
3

[
ei(φn+φs+φe+φw)|1n1s1e1w〉

+ e2i(φe+φw)|0n0s2e2w〉+ e2i(φn+φs)|2n2s0e0w〉
]
. (6.15)

With high pump power there is a chance that one photon will be detected in each of
the four modes, in which case the state is projected onto |1111〉 term only, and the
global phase can be ignored. However, if the modes are mixed by an interferometer
prior to measurement, we can no longer be sure that a given fourfold detection event
did not arise from one of the |2200〉 or |0022〉 terms. Since the phases ~φ fluctuate
in time, the average state will in general be partially mixed, and will not produce
high-visibility quantum interference.

We take a number of measures to overcome these problems. First, we can easily
perform three-photon experiments in which modes N,S,E are sent into the interfer-
ometer, while mode W is connected directly to a heralding single-photon detector.
Postselection on detection of three photons at the output of the interferometer to-
gether with detection at the herald then isolates an effective input state of three
degenerate single photons in three modes, |111〉.

In order to study four-photon statistics arising from the |1111〉 term, we must
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Figure 6.6: (a) By coupling to the four compass points of the SPDC cone (N,S,E,W)
we can well-approximate states of three degenerate photons in three modes, heralded
on detection of a fourth photon. (b) This approach can be modelled as two inde-
pendent SPDC processes at different crystals.

currently take a less satisfactory approach. Connecting all four modes to the interfer-
ometer, we first acquire fourfold coincidence countrates cmi using the full four-mode
four-photon SPDC state (6.14). During this measurement, we continuously rotate
the polarization of one arm of the source using an arrangement of waveplates (figure
6.6), forcing the average state into a maximal mixture10

ρ̂4 =

∫ (
R̂(t)n ⊗ Is ⊗ Ie ⊗ Iw

)
|Ψ(t)〉4〈Ψ(t)|4dt

= |1111〉〈1111|+ |2200〉〈2200|+ |0022〉〈0022|. (6.16)

We would then like to treat detection events due to the |2200〉 and |0022〉 terms as
noise. Fortunately, these countrates can be experimentally measured: making two
further measurements with modes E/W and N/S disconnected from the interfer-
ometer respectively, we obtain two new sets of experimental countrates (cnsi , cewi ).
Subtracting these countrates from the mixed state data cmi , we recover statistics
which model the behaviour of the desired |1111〉 state. This approach is prob-
lematic, quantum interference is to a certain extent artificially constructed using
measurements on a maximally mixed state. As a result, this is not a scalable route
to high photon-number experiments. However, short of post-selecting from higher-
photon number terms in the state with exponentially low probability, or waiting
for a scalable single-photon source, it nonetheless provides an immediate route to

10By introducing a strong, controlled, uniform source of noise, we “override” any effects from the
uncontrolled, non-uniform thermal/acoustic phase fluctuation. In this sense, the method described
here shares some similarity with the techniques for precise characterization under environmental
noise described in section 4.5.
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experimental tests of the |1111〉 state.

Quantum walk chip

All of the quantum walk data presented in this section was measured using a 2-D
waveguide array (figure 6.5), fabricated in silicon oxynitride (SiOxNy). The cou-
pled region of the array, which is 700 µm long, consists of 21 waveguides with a
cross-section of 2.2 µm × 0.85 µm, and a uniform pitch of 1.3 µm. Curved fan-in
and fan-out waveguides connect each mode to input and output ports at the chip
facets, which are butt-coupled to PMF V-groove arrays with a pitch of 127 µm. The
waveguides are tapered to a width of 0.7 µm to improve coupling to the fibre mode.
An oil-based index-matching fluid was used to further improve coupling efficiency.
The lumped fibre-to-fibre coupling was typically ∼ 30%.

SiOxNy is a ceramic material, whose refractive index can be tuned between∼ 1.45
and ∼ 2 by controlling the nitrogen/oxygen ratio (x/y). Compared to silica-on-
silicon waveguides (section 2.2.1), SiOxNy can achieve a much higher refractive index
contrast of ∆ = (n2

2−n2
1)/2n2

1 = 4.4% between the waveguide core (n2) and cladding
(n1), allowing a significantly smaller bend radius (section 1.5.1) and more compact
fan-in/fan-out regions.

BosonSampling chip

Following the prescription of Aaronson and Arkhipov [5], the BosonSampling

device used here implements a random unitary operation on 9 modes, chosen by the
Haar measure (section 1.3.1) on U(9). In order to implement this operator in linear
optics, we make use of the Reck-Zeilinger scheme described in section 1.5.4 of this
thesis. The layout of directional couplers is shown in figure 6.5.

The chip is fabricated in silicon nitride (Si2N3), with a refractive index contrast
of 27%. The device consists of a total of 36 directional couplers. The high index-
contrast afforded by Si2N3 was essential in order to achieve a compact circuit and
suppress losses. Each waveguide has a cross-sectional width of 1.5 µm, and the
pitch between parallel waveguides was designed to match that of the fibre arrays
(127 µm). At each directional coupler, the separation between waveguides is 2.5 µm,
with an interaction length, depending on the desired coupling ratio, of ∼ 400 µm.
This device is not reconfigurable — each coupling ratio and internal phaseshift was
written directly into the device, based on a single randomly chosen Û . Although this
device provides a much higher refractive index contrast than SiOxNy, the lumped
fibre-to-fibre coupling efficiency was typically much lower — on the order of ∼ 5%.
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We attribute much of this loss to poor mode-matching between fibre and waveguide,
rather than propagation loss, and expect that this can be considerably improved.

Pseudo-number-resolving detection

BosonSampling only requires that measurements are performed in the collision-
free subspace where no two photons occupy the same mode. It is therefore sufficient
to use non-number resolving detectors, such as the silicon APDs used throughout
this thesis. For quantum walks, however, the most interesting features occur when
photons bunch together i.e. on the main diagonal of the correlation matrix (i ≈ j ≈
k . . .). In order to observe these effects, we must be able to count up to four photons
in single mode. While number-resolving detectors have recently been reported both
at room temperature and using superconducting nanowires (see section 1.6.4), they
are currently not widely available.

In order to examine the collision subspace of probability distributions generated
by the quantum walk chip, we instead multiplex silicon APDs using fibre splitters,
thus approximating non-deterministic number-resolving detectors. Using d unit-
efficiency detectors, together with a balanced 1-to-d fibre splitter, we ideally detect
p photons in a single mode with probability

P (p, d) =

(
d

p

)
/

[(
d+ p− 1

p

)
pp
]
. (6.17)

P (d, p) is polynomial in p if d ≥ p2, and this scheme is in principle scalable. Nu-
merical simulations of realistic detection efficiencies, taking into account various
experimental imperfections, are shown in figure 6.7.

6.3.4 Characterization and numerical simulation

In order to compare our experimental results with theory, we implemented detailed
numerical simulations of each setup, incorporating various measured experimental
parameters.

The visibility of quantum interference of the photon source was characterized
by measurement of Hong-Ou-Mandel dips. Fitting curves to measured count rates
as described in section 2.4, we estimated the HOM dip visibility between photons
generated in separate downconversion events (“off-pair” photons) to be ∼ 88%. The
visibility of off-pair quantum interference is reduced with respect to an on-pair dip
by the possibility that two photons are generated at different times within a single
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(a) (b)
1 21

Figure 6.7: (a) Numerical simulation of pseudo-number-resolving detection effi-
ciency using fibre splitters and multiplexed non-number-resolving detectors. The
simulation assumes an average single-detector quantum efficiency of 60± 10%, and
a variance in splitting ratio of ∼ 10% — realistic experimental values. Inset: an
example with p = 3, d = 4. (b) Eight detection schemes used to image three-photon
data in a quantum walk.

pulse, leading to temporal distinguishability. Our laser was therefore optimized for
generation of short pulses.

Fabrication of both QW and RU chips is subject to imperfection in coupling
ratios and phase shifts, and the unitary Ûd describing each device will differ slightly
from the Û originally designed. Owing to the ordered structure of the QW chip,
we were able to characterize ÛQW by means of single photon measurements only,
using bright laser light injected at the centre of the array. Assuming that deviation
from the original design is most prominent in the nearest-neighbour coupling ratios
γij (which depend exponentially on distance) and time parameter t, a nonlinear
optimization algorithm was used to find values of these (20+1) free parameters
which best reproduce the experimentally measured single-photon distribution. We
found a standard deviation in the reconstructed coupling ratio of σβ ∼ 5%.

For the RU chip, since fabrication error could potentially lead to any m-mode
unitary, we use the more rigorous approach of Laing [67], which allows full recon-
struction of the device unitary by means of a single-photon and two-photon measure-
ments only. This method, which does not require interferometric stability between
the chip and probes, is scalable: since Ûd is described by a number of parameters
polynomial in m, it can be completely reconstructed using a polynomial number of
measurements.
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Figure 6.8: Absence and emergence of correlated bosonic clouds. Three-photon
data for a nine mode random unitary (RU,a,b,e,f) and a 21 mode quantum walk
(QW,c,d,g,h). The radii of spheres centred at coordinates (i, j, k) are proportional
to the probability of detecting three photons in output modes i, j and k respec-
tively. We tune between indistinguishable (blue) and distinguishable (red) photons
by introducing a large path-length difference at the source. (a) Experimental RU
with indistinguishable and (b) distinguishable photons. (c,d) Bosonic clouds from
experimental QW using indistinguishable and distinguishable photons respectively.
(e,f) Simulated RU with indistinguishable and distinguishable photons respectively.
(g,h) Theoretical bosonic clouds from QWwith indistinguishable and distinguishable
photons respectively. Experimental data has been corrected for measured detection
efficiency. Numerics have been filtered to show only those detection patterns which
were experimentally measured — this is the main reason for the apparent asymmetry
between boson clouds.

Our numerical simulations also make use of a full audit of individual detector
efficiencies, fibre splitter coupling ratios, and losses, together with a model of each
pseudo-number-resolving detection scheme.

6.3.5 Experimental results

Bunching and clouding in quantum walks

In our first experiment, we injected the three-photon state |111〉 into the central
waveguides (k=10,11,12) of the QW chip, using the fourth output mode of the
source as a herald as previously described. Using 1-to-2 and 1-to-3 fibre splitters
in a total of eight configurations (figure 6.7), we measured 524 of the 1771 possible
three-photon detection events over 21 modes, obtaining a total of 3870 three-fold
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events. Delaying the arrival time of photons from modes E and S of the source on
the order of the photon coherence time (∼ 1 ps), we repeated this measurement with
mutually distinguishable photons, obtaining 5588 threefold events.

We found a statistical fidelity between normalized theoretical P th
i and experi-

mental P exp
i probability distributions of FQ = 0.930± 0.003 and FC = 0.961± 0.002

for indistinguishable and distinguishable input states respectively. Error bars are
calculated using a Monte-Carlo technique, assuming Poissonian statistics. We at-
tribute the observed discrepancy between experiment and theory to imperfect char-
acterization of the QW device, non-uniform facet/coupling loss, limited visibility of
quantum interference due to photon distinguishability introduced by propagation
through device itself, and higher-order terms in the SPDC state.

Experimental QW data is compared with numerical simulations in figure 6.8 (c, d,
g & h). Using indistinguishable photons, bosonic bunching is immediately apparent
along the main diagonal of the correlation cube, with three-photon detection events
strongly suppressed in off-diagonal regions. Two “clouds” are clearly visible, centred
on waveguides 6 and 16. If one photon is detected at waveguide 16 (for example), it is
much more likely that the remaining two photons will also be detected in the vicinity
of that waveguide. In contrast, using distinguishable photons we are equally likely
to detect photons at opposite sides of the array as to find them grouped together,
and the clouds are seen to dissipate.

We can compare this behaviour with three-photon data obtained from the un-
structured RU chip, shown together with numerical simulations in figure 6.8 (a,
b, e & f). For the QW chip, it is meaningful for two waveguides to be nearest
neighbours, while for the RU chip this is not the case. No clouding behaviour is
observed, and the distinction between distinguishable and indistinguishable photons
is qualitatively not as strong.

In order to quantify this bosonic clouding effect, we construct a simple metric.
For a general experiment of p photons in m modes, the correlation matrix forms a p-
dimensional hypercube with 2p quadrants11. We define the clouding parameter C to
be the fraction of events which occupy the two principal quadrants, i.e. those which
intersect the main diagonal i = j = k = l . . .. We obtained experimental values of
Cexp
Q = 0.288±0.015 and Cexp

C = 0.20±0.01 for indistinguishable and distinguishable
photons respectively, compared to theoretical values of Cth

Q = 0.332 ± 0.007 and
Cth
C = 0.202 ± 0.005, indicating significantly stronger clouding under the influence

of quantum interference.

11Higher-dimensional quadrants of hypercubes are referred to as octants or hyper-octants.
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Isolating the |1111〉 term from |ΨSPDC〉 as previously described, we measured
four-photon correlations at the output of the QW device, with modes N , S, E
and W of the source connected to waveguides (k=9,10,11,12) respectively. Using
1-by-4 splitters in two different configurations, we measured coincidence countrates
for 1016 out of a possible 10626 four-fold patterns, collecting ∼ 50, 000 events over
the course of ∼ 1 week. Experimental data is plotted together with numerical
simulations in figure 6.9(a, b). We found statistical fidelities between normalized
experimental and theoretical distributions of FQ = 0.971± 0.001 and FC = 0.978±
0.004 respectively. Experimental and theoretical clouding parameters were measured
to be Cex

Q = 0.175 ± 0.007 and Cth
Q = 0.144 ± 0.002 respectively. In contrast,

we measured significantly smaller values of C when all four photons were made
distinguishable, finding experimental and theoretical values of Cex

C = 0.09 ± 0.003

and Cth
C = 0.078 ± 0.001 respectively. These values are compared graphically in

figure 6.9(d).

While acquiring this four-photon data, the counting system also recorded 217
five-fold detection events. These events arise from extremely low-probability six-
photon terms in |ΨSPDC〉, where one photon is lost. The Hilbert space dimension of
5 photons in 21 modes — the number of possible detection patterns — is 53,130. As
a result, with so few detection events registered in total, no unique detection pattern
appears more than twice in our data. In this regime it is no longer helpful to to
plot individual countrates in a bar chart, or compute statistical fidelities. However,
the clouding metric, which boils the full dataset down to a single global property
of the probability distribution, appears to detect evidence of bosonic clouding, and
therefore quantum interference, in our experimental data. We measured values of
CQ = 0.079±0.019 and CC = 0.058±0.016 for indistinguishable and distinguishable
photons respectively. These values are compared graphically in figure 6.9(e).

Quantum verification in large Hilbert spaces

Full quantum state tomography (section 2.6) of the three-photon, 21-mode state
shown in figure 6.8 would require O(1×106) measurements to reconstruct the d2−1

free parameters of the density matrix ρ̂. Without exploiting known structure in
the state, full reconstruction of the 5-photon state measured in figure 6.9(e) would
require O(1 × 109) linearly independent measurement settings. Even estimating
the expectation value of a single measurement setting is likely to be prohibitively
time-consuming, as the probability of any given event is so small.

We can compare this situation to that of Shor’s algorithm, which is designed
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in such a way that, for a sufficiently large problem size, the experimentalist cannot
accurately measure the probability of detecting any given n-qubit state in polynomial
time. Specifically, when factoring an L-bit number N , Shor’s algorithm generates
a periodic probability distribution characterized by O(N) ∝ O(2L) equally spaced
peaks. Although it is exponentially more likely that the machine will output a result
corresponding to a peak than a trough, since each peak is exponentially small, the
probability of registering the same outcome twice is negligible. Despite this, the
period — a global property of the probability distribution, which is a function of
its highly structured nature — can be extracted (using the inverse quantum Fourier
transform (QFT)) after only polynomially many trials, yielding the prime factors
and thus a simple means of verifying the output.

As experiments in quantum computation and quantum information continue to
scale in complexity and Hilbert space dimension, the available experimental data
will necessarily be increasingly sparse, to the extent that standard methods of com-
parison with theory will break down. Moreover, we are already approaching the
point at which both full numerical simulation of the experimental setup, as well as
full characterization by quantum state tomography, become classically intractable.
Our results begin to encroach on this regime of extremely sparse data and challeng-
ing classical simulation. However, as we have shown, using global measures which
exploit known structure in the probability distribution or experimental setup, we
are nonetheless able to verify that the machine operates as desired.

This global, structured approach is possible for the QW chip, as the device is
specifically designed to generate highly structured probability distributions. How
can we confirm successful operation of the RU chip, which is nominally completely
unstructured?

Experimental verification of BosonSampling

Injecting three photons into the first three modes of the RU chip, we measured 434
three-fold coincidences, distributed over all 84 detection patterns in the collision-
free subspace. Experimental results from both indistinguishable and distinguishable
photons are compared with numerical simulations (based on the reconstructed ex-
perimental device unitary Ûd) in figures 6.8 (a,b) and (e,f) respectively. Statistical fi-
delities between the experimental data and numerical model were FQ = 0.939±0.010

and FC = 0.970 ± 0.007, for indistinguishable and distinguishable photons respec-
tively.

The principal claim of ref. [62] is that without knowledge of Ûd, the experimen-
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Figure 6.9: Quantum-walk-specific verification. (a) Experimental data (black
points) for four indistinguishable photons in a 21 mode quantum walk, over 1820
four-fold detection patterns, ordered by descending theoretical probability (red
points). Number-resolved data is highlighted with blue circles. Error bars assume
Poissonian statistics. (b) Reconstructed pure-state four-photon data, after subtrac-
tion of experimentally-measured contributions due to |2200〉 and |0022〉 terms. In
(c-e) we perform a quantum-walk-specific test for p = 3, 4, 5 photons, measuring the
fraction of events C in the principal quadrants (see inset). We plot experimental
results for indistinguishable (blue) and distinguishable (red) photons, along with
a corresponding theoretical distribution with the same number of samples drawn.
In all cases, we see a statistically significant increase in C for indistinguishable
photons. In (f) we perform the same test for three photons in a 9-mode random uni-
tary, where our quantum-walk-specific test does not reveal statistically significant
quantum-classical separation, as expected.

talist cannot discriminate between an untrusted BosonSampling machine and
a classical uniform-sampler F , without first measuring an exponential number of
samples. In our first approach to verification of the RU device, we assert that in
the context of realistic experiments it seems unreasonable to enforce the condition
that Ûd should be unavailable to the experimentalist: as we have already described,
it can always be efficiently measured [67]. Indeed, Aaronson and Arkhipov have
shown [68] that given Ûd, a BosonSampling machine can be distinguished from a
uniform-sampling machine in polynomial time using the so-called row-norm or R∗

discriminator, prompting experimental interest [69].

Sending p photons into modes zai of a device with a known transfer matrix
Λ↔ Ûd, we sample a single detection event, registering a coincidence-click at output
modes zbj . We isolate the p × p submatrix M of Λ, choosing columns and rows
according to zai and zbj respectively, and then compute the normalized product R∗
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of row-norms of M ,

R∗ =
1

pp

p∏
i=1

(
p∑
j=1

|Mij|2
)
. (6.18)

Note that this quantity can be computed in classical polynomial time. While R∗

does not give a good approximation to | per(M)|2, it is nonetheless sufficiently cor-
related with B — which does depend on | per(M)|2 — to discriminate between
BosonSampling devices and uniform-samplers.

In order to confirm that B as generated by our experiment can rapidly be dis-
tinguished from F , we use Bayesian inference to update our knowledge in real time,
based on the data shown in figure 6.8. Bayes’ theorem gives the probability that we
are sampling from B, given our experimental values of R∗

P (B|R∗) =
P (R∗|B)P (B)

P (R∗)
. (6.19)

In order to obtain P (R∗|B), we numerically estimate the probability that R∗ is above
a threshold value of 1, finding P ((R∗ > 1)|B) = 0.631, P ((R∗ < 1)|B) = 0.369.
Starting from an unbiased prior, P (B) = P (F) = 1/2, after only 12 detection
events we obtain a confidence level greater than 90% that the experimental data
was drawn from B. Using all 434 detection events, this rises to P (B|R∗) = 1−10−35.

In F , Goglin et al. consider a somewhat artificial failure mode of a Boson-

Sampling device — in reality, the experimentalist is likely to know a priori that
the device in the lab is not a uniform sampler. A more realistic possibility is that
photons sent into the device are partially or completely mutually distinguishable, a
legitimate experimental concern. In this case no quantum interference is observed
in the output probability distribution C, and the behaviour of the device can be
classically predicted in polynomial time. Here, the R∗ test fails to distinguish B
from a classical machine generating C. As we have already seen, the clouding metric
C also fails to detect a signature of quantum interference in BosonSampling data,
owing to the lack of structure in B.

An alternative test, which succeeds in this task, measures the net probability
that a p-fold click is detected in the collision-free subspace, when p photons are
sent into the device. Intuitively, since indistinguishable photons tend to bunch
together, this probability should increase when input photons are made distinguish-
able. The fraction of trials N to p-fold detection events P was estimated to be
P ex
Q (p − fold) = 0.450 ± 0.028 and P ex

C (p − fold) = 0.680 ± 0.002 for indistinguish-
able and distinguishable photons respectively, compared to theoretical values of
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Figure 6.10: Asymmetry in postselected on quantum walks. (a-f) Numerical simu-
lation of quantum walk time evolution under postselection. Beginning with a four-
photon quantum walk, we postselect on detection of one photon in a specific waveg-
uide. Figures (a-f) show successive steps in the time evolution of the resulting three
photon state as correlation cubes. Each axis of the cube denotes the position of a
photon in the array, where the hue and radius of each sphere are proportional to
the probability of detecting three photons, after postselection, at waveguides i, j, k.
(f) A two-photon quantum walk, postselected from three-photon data. The radius
of each red circle corresponds to the experimental count rate in waveguides i, j,
after postselection and correction for measured detection efficiencies. Black circles
show a numerical simulation. The asymmetry seen in the numerics (a-f) is clearly
reproduced. (h) Experimental data using distinguishable photons. The apparent
asymmetry is an artefact of our measurement setup.

P th
Q = 0.509 and P th

C = 0.691. Here we used the method of [69] to estimate N .

6.3.6 Postselected multiphoton quantum walks

One of the most powerful features of BosonSampling is that it demands neither
postselection nor adaptive measurement. It is remarkable that BosonSampling

provides a quantum speedup in the absence of any nonlinear coupling between pho-
tons, either in the sense of nonlinear optics (section 1.5.5) or the measurement-
induced nonlinearity of KLM (section 1.6.2). It is nonetheless interesting to ask
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whether anything might be accomplished by minimal postselection and/or feed-
forward on quantum walks or BosonSampling machines.

The probability distribution generated by a quantum walk of a single photon in a
linear, uniformly coupled array is symmetric about the input waveguide (figure 6.4).
For multiphoton walks, if the choice of input waveguides is symmetric, the multi-
photon distribution will also be symmetric, as seen in our three-photon experimental
data (figure 6.8). However, by postselecting on detection of one photon in a particular
waveguide, we find that interesting asymmetric effects can be seen in the resulting
(p− 1)-photon statistics.

Figures 6.10(a-f) show numerical simulations of the time evolution of a four-
photon quantum walk, after postselection on detection of one photon in a particular
off-centre mode. The resulting three-photon statistics show an asymmetric distribu-
tion, with a single ballistic lobe propagating on the main diagonal. We expect that
this effect would be difficult to achieve without postselection, assuming a uniform,
planar waveguide array12. We used the QW chip to test this behaviour, sending
three indistinguishable photons into the device as before and postselecting on de-
tection at waveguide 15. Experimental two-photon correlations are shown in figure
6.10(g), where a single asymmetric lobe can be clearly seen. Using distinguishable
photons, we do not see the same effect (figure 6.10(h)).

6.3.7 Discussion

The experimental progress described in this section is characterized by an increase in
complexity. Each optical chip has more than twice as many spatial modes as those
previously described in this thesis, and the RU device has 36 directional couplers,
compared to 13 for the CNOT-MZ. We have described a four-photon source which,
although not entirely novel, has been used in a previously unexplored capacity. To
our knowledge, ours is the first demonstration of correlated coincidence counting
using 16 single photon detectors where all possible detection events are registered13.
This system has allowed us to take detailed images of the complex three-photon
interference effects shown in figure 6.8, which have not previously been observed.

In [68], Aaronson and Arkhipov describe an efficient classical algorithm due to
Fernando Brandao, based on work of Trevisan et al. [70], which generates a “mock-
up” probability distributionM which provably cannot be distinguished from B by
circuits of any fixed polynomial size. This distribution is carefully designed , and it

12Careful control of the phase of input photons, following the classical approach of beam steering
using a phased array, might conceivably reproduce this effect.

1316 detectors are used in ref [60], but only a subset of possible detection events are recorded.
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is not currently known whether any machine — classical or quantum — could dis-
tinguishM from B in polynomial time. Although it is hard to say at this stage, it
would not be surprising if the deliberate lack of structure in B renders BosonSam-

pling machines fundamentally indistinguishable from certain adversarial classical
“fakes”. Nonetheless, we have shown that a specific small class of experimentally
relevant BosonSampling failure modes can be efficiently detected in experiments.
We expect that the scope of such methods will grow, to encompass the majority of
realistic errors that might render BosonSampling machines classically tractable.

Moreover, we have found circumstantial evidence to suggest that by deliberately
imposing structure on the interferometer and resulting probability distribution, the
difficulty of experimental verification can be significantly reduced. To this end,
we have shown that by exploiting known qualitative properties of the probability
distribution generated by a quantum walk, we are able to detect a signature of
quantum interference even in extremely large and non-separable Hilbert spaces,
where it is no longer practical to measure probabilities. We do not expect that the
scheme used in section 6.3.5, as described, will always return a definitive answer
after a polynomial number of events14. However, we expect that future scalable
techniques will follow our basic method, and that probability distributions with
tailored structure will be essential to light the way, as we drive out into the darkness
of classical computational intractability.

Statement of work

The majority of my contribution to work described in this section has been in
the construction and programming of the counting system (section 6.2), as well as
analysis of multiphoton data. I also performed many of the numerical simulations,
and worked on data acquisition in the lab.

14Doubts might be raised by the fact that the number of hypercube orthants which intersect
with the main diagonal of the correlation matrix falls off exponentially with p.
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Chapter 7

Discussion

We have described a broad spectrum of experiments in quantum photonics, many of
which make use of the control and complexity afforded by monolithic integration. In
our work with the CNOT-MZ, we have shown the value of reconfigurability in such
devices, and the surprising diversity of experiments which can be performed with
just two qubits. In doing so, we have confirmed that integrated quantum photonics
can reproduce the performance and flexibility of bulk optics.

Using this device we have implemented a new variant on Wheeler’s delayed choice
experiment, observing continuous tuning between wave and particle phenomena for
the first time. While we do not contend that this result provides new physical under-
standing over and above Bell’s theorem, for example, we suggest that it nonetheless
provides a useful pedagogical tool to think about wave-particle duality.

In chapter 4, we introduced three new protocols, which allow the presence of
entanglement to be certified under suboptimal experimental conditions. It is rea-
sonable to think that these techniques will be useful for the characterization of
quantum states in the laboratory, where calibration and alignment can sometimes
be problematic. We believe that these methods might also find applications in
quantum key distribution and related quantum communication protocols, when two
distant parties do not share a common frame.

Chapter 5 introduced a new algorithm for quantum chemistry. Although the
analysis is not complete, we believe that this technique potentially offers very signif-
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icant benefits over the current status quo for quantum simulation, particularly with
respect to the number of gate operations required. Even if this algorithm is not
used in the exact form described here, we anticipate that realistic implementations
of quantum simulators will need to adopt the pragmatic approach described here.
We ran our algorithm using the CNOT-MZ, demonstrating both the ability of the
algorithm to simulate larger systems with fewer resources, as well as further testing
the performance and repeatability of the integrated quantum chip.

Finally, chapter 6 describes a number of technical advances in both state prepa-
ration and measurement. As with the CNOT-MZ, we again see that by increasing
the number of experimental degrees of freedom by a relatively small amount, we
expand the diversity and power of experimental quantum phenomena very signifi-
cantly. We expect that successful verification techniques for BosonSampling-like
problems, if not following exactly the method outlined in chapter 6, will at least
depend on the fundamental ideas described therein: namely, deliberate introduction
and exploitation of structure in the device and resulting probability distribution.
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Finally, I was let down and joined the others at the window,
to watch the sleet fall.

Ivor Cutler
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Appendix A

qy

In the course of the experimental work described in this thesis we have developed
a broad general-purpose base of computer code (qy), which is maintained and doc-
umented as a library to encourage re-use. The majority of this code is written in
the Python programming language1, with some compiled extensions written in C or
Cython for speed. Both of these languages are free and open source.

qy includes modules for data acquisition (DAQ) and hardware control, data
logging and analysis, and numerical simulation, with a specific emphasis on tasks
which often occur in experimental quantum photonics. The code is currently open
source, and can be obtained via git:

https://github.com/peteshadbolt/qy

The top-level structure of the library is as follows:

• qy.analysis: Various standard metrics and tools for data analysis.

• qy.formats: File formats, in particular an efficient format to represent mul-
tiphoton coincidence-counting data.

• qy.graphics: Utility functions for graphics and plotting.

• qy.hardware: Interfaces to various pieces of standard laboratory apparatus,
including FPGA counting systems, the DPC-230 described in section 6.2, Top-

1http://www.python.org/
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tica diode lasers, Coherent Ti:Saph lasers, custom powermeters, Thor labs
SMC100 power meters, silica-on-silicon thermal phase shifters, etc.

• qy.settings: Utility functions to read, write and persist global settings.

• qy.simulation: Provides general quantum information primitives, including
single-qubit states and operators, frequently used two-qubit states and gate
operations, measures such as quantum state fidelity and concurrence, a circuit-
model simulator, and an optimized linear-optics simulator, capable of calcu-
lating multiphoton states and statistics in arbitrary linear optical networks.

• qy.util: Utility functions.

• qy.wx: Extends the functionality of the wx GUI library.

Here we will discuss two components in particular: the linear_optics simulation
package and the .counted file format.

A.1.0 Universal linear optics simulator

The module qy.simulation.linear_optics provides a simple means to simulate
multiphoton states and statistics in arbitrary linear optical circuits. This work draws
upon ideas and code kindly provided by Jasmin Meinecke, Nick Russell, Jacques
Carolan. The numerical method is exactly that described in section 1.5.3, and as
such depends almost entirely on the calculation of permanents. We have developed
optimized code to compute the permanent of complex matrices, using a number of
different algorithms and implementations. We implemented the core algorithm using
Cython, a compiled language which can typically achieve much better performance
than standard Python, which is interpreted rather than compiled. Typical real-world
performance of these methods is summarized in figure A.1. The library is very easy
to use:

import numpy as np

from qy.simulation import linear_optics as lo

# Load up a device from a JSON definition file:

device=lo.beamsplitter_network(json=’devices/cnot_mz.json’)

print device

print device.get_unitary (). round (2)

print device.nmodes
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Figure A.1: Estimated performance of various implementations of algorithms to
compute the permanent, tested against 1000 Haar-random N × N matrices. Red
and blue lines show average execution times for for Ryser’s algorithm, implemented
in Python and Cython respectively, as a function of N . Green and black lines
correspond to execution times for hard-coded implementations up to N=4, again in
Python and Cython respectively.

# Draw the waveguide structure as a PDF file

device.draw(’devices/cnot_mz.pdf’)

# Make a simulator , and link it to the device

simulator=lo.simulator(device , nphotons =2)

# Print out the basis

print simulator.basis

# Set the input state to two photons in the top mode , and look at

# the output probabilities and output state

simulator.set_input_state ([0, 0])

print simulator.input_state

print simulator.get_probabilities (). round (2)

print simulator.get_output_state ()
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# Superposition input states , and classical statistics

state=simulator.basis.get_state ()

state [0 ,1]=1/np.sqrt (2)

state [3 ,4]=1/np.sqrt (2)

print state

simulator.set_input_state(state)

simulator.set_visibility (0.5)

print simulator.get_probabilities ()

# Performance test: 4 photons in 16 modes of a Haar -random U

# Hilbert space dimension is now 3876

device=lo.random_unitary (16)

simulator=lo.simulator(device , nphotons =4)

simulator.set_input_state(range (4)) # Photons go in the top 4 modes

probs=simulator.get_probabilities(label=True)

When computing the permanent, it was noticed (by Nick Russell) that hard-
coded routines can give a significant advantage in speed for small matrices, as
the overhead associated with loops and conditional statements can be completely
avoided. For completeness we include code up to N = 4, beyond which the advan-
tage with respect to Ryser’s algorithm is negligible.
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def perm_2x2(a):

""" An explicit 2x2 permanent """

return a[0 ,0]*a[1,1]

+ a[1,0]*a[0,1]

def perm_3x3(a):

""" An explicit 3x3 permanent """

return a[0 ,0]*a[1,1]*a[2,2]

+ a[0,0]*a[2,1]*a[1,2]

+ a[1,0]*a[0,1]*a[2,2]

+ a[1,0]*a[2,1]*a[0,2]

+ a[2,0]*a[0,1]*a[1,2]

+ a[2,0]*a[1,1]*a[0,2]

def perm_4x4(a):

""" An explicit 4x4 permanent """

return a[0 ,0]*a[1,1]*a[2,2]*a[3,3] + a[0,0]*a[1,1]*a[3 ,2]*a[2,3]

+ a[0,0]*a[2,1]*a[1,2]*a[3,3] + a[0,0]*a[2 ,1]*a[3,2]*a[1,3]

+ a[0,0]*a[3,1]*a[1,2]*a[2,3] + a[0,0]*a[3 ,1]*a[2,2]*a[1,3]

+ a[1,0]*a[0,1]*a[2,2]*a[3,3] + a[1,0]*a[0 ,1]*a[3,2]*a[2,3]

+ a[1,0]*a[2,1]*a[0,2]*a[3,3] + a[1,0]*a[2 ,1]*a[3,2]*a[0,3]

+ a[1,0]*a[3,1]*a[0,2]*a[2,3] + a[1,0]*a[3 ,1]*a[2,2]*a[0,3]

+ a[2,0]*a[0,1]*a[1,2]*a[3,3] + a[2,0]*a[0 ,1]*a[3,2]*a[1,3]

+ a[2,0]*a[1,1]*a[0,2]*a[3,3] + a[2,0]*a[1 ,1]*a[3,2]*a[0,3]

+ a[2,0]*a[3,1]*a[0,2]*a[1,3] + a[2,0]*a[3 ,1]*a[1,2]*a[0,3]

+ a[3,0]*a[0,1]*a[1,2]*a[2,3] + a[3,0]*a[0 ,1]*a[2,2]*a[1,3]

+ a[3,0]*a[1,1]*a[0,2]*a[2,3] + a[3,0]*a[1 ,1]*a[2,2]*a[0,3]

+ a[3,0]*a[2,1]*a[0,2]*a[1,3] + a[3,0]*a[2 ,1]*a[1,2]*a[0,3]

def perm_5x5(a):

""" An explicit 5x5 permanent """

return a[0 ,0]*a[1,1]*a[2,2]*a[3 ,3]*a[4,4] + a[0,0]*a[1 ,1]*a[2,2]*a[4,3]*a[3,4]

+ a[0,0]*a[1,1]*a[3,2]*a[2 ,3]*a[4,4] + a[0 ,0]*a[1,1]*a[3,2]*a[4,3]*a[2,4]

+ a[0,0]*a[1,1]*a[4,2]*a[2 ,3]*a[3,4] + a[0 ,0]*a[1,1]*a[4,2]*a[3,3]*a[2,4]

+ a[0,0]*a[2,1]*a[1,2]*a[3 ,3]*a[4,4] + a[0 ,0]*a[2,1]*a[1,2]*a[4,3]*a[3,4]

+ a[0,0]*a[2,1]*a[3,2]*a[1 ,3]*a[4,4] + a[0 ,0]*a[2,1]*a[3,2]*a[4,3]*a[1,4]

+ a[0,0]*a[2,1]*a[4,2]*a[1 ,3]*a[3,4] + a[0 ,0]*a[2,1]*a[4,2]*a[3,3]*a[1,4]

+ a[0,0]*a[3,1]*a[1,2]*a[2 ,3]*a[4,4] + a[0 ,0]*a[3,1]*a[1,2]*a[4,3]*a[2,4]

+ a[0,0]*a[3,1]*a[2,2]*a[1 ,3]*a[4,4] + a[0 ,0]*a[3,1]*a[2,2]*a[4,3]*a[1,4]

+ a[0,0]*a[3,1]*a[4,2]*a[1 ,3]*a[2,4] + a[0 ,0]*a[3,1]*a[4,2]*a[2,3]*a[1,4]

+ a[0,0]*a[4,1]*a[1,2]*a[2 ,3]*a[3,4] + a[0 ,0]*a[4,1]*a[1,2]*a[3,3]*a[2,4]

+ a[0,0]*a[4,1]*a[2,2]*a[1 ,3]*a[3,4] + a[0 ,0]*a[4,1]*a[2,2]*a[3,3]*a[1,4]

+ a[0,0]*a[4,1]*a[3,2]*a[1 ,3]*a[2,4] + a[0 ,0]*a[4,1]*a[3,2]*a[2,3]*a[1,4]

+ a[1,0]*a[0,1]*a[2,2]*a[3 ,3]*a[4,4] + a[1 ,0]*a[0,1]*a[2,2]*a[4,3]*a[3,4]

+ a[1,0]*a[0,1]*a[3,2]*a[2 ,3]*a[4,4] + a[1 ,0]*a[0,1]*a[3,2]*a[4,3]*a[2,4]

+ a[1,0]*a[0,1]*a[4,2]*a[2 ,3]*a[3,4] + a[1 ,0]*a[0,1]*a[4,2]*a[3,3]*a[2,4]

+ a[1,0]*a[2,1]*a[0,2]*a[3 ,3]*a[4,4] + a[1 ,0]*a[2,1]*a[0,2]*a[4,3]*a[3,4]

+ a[1,0]*a[2,1]*a[3,2]*a[0 ,3]*a[4,4] + a[1 ,0]*a[2,1]*a[3,2]*a[4,3]*a[0,4]

+ a[1,0]*a[2,1]*a[4,2]*a[0 ,3]*a[3,4] + a[1 ,0]*a[2,1]*a[4,2]*a[3,3]*a[0,4]

+ a[1,0]*a[3,1]*a[0,2]*a[2 ,3]*a[4,4] + a[1 ,0]*a[3,1]*a[0,2]*a[4,3]*a[2,4]

+ a[1,0]*a[3,1]*a[2,2]*a[0 ,3]*a[4,4] + a[1 ,0]*a[3,1]*a[2,2]*a[4,3]*a[0,4]

+ a[1,0]*a[3,1]*a[4,2]*a[0 ,3]*a[2,4] + a[1 ,0]*a[3,1]*a[4,2]*a[2,3]*a[0,4]

+ a[1,0]*a[4,1]*a[0,2]*a[2 ,3]*a[3,4] + a[1 ,0]*a[4,1]*a[0,2]*a[3,3]*a[2,4]

+ a[1,0]*a[4,1]*a[2,2]*a[0 ,3]*a[3,4] + a[1 ,0]*a[4,1]*a[2,2]*a[3,3]*a[0,4]

+ a[1,0]*a[4,1]*a[3,2]*a[0 ,3]*a[2,4] + a[1 ,0]*a[4,1]*a[3,2]*a[2,3]*a[0,4]

+ a[2,0]*a[0,1]*a[1,2]*a[3 ,3]*a[4,4] + a[2 ,0]*a[0,1]*a[1,2]*a[4,3]*a[3,4]

+ a[2,0]*a[0,1]*a[3,2]*a[1 ,3]*a[4,4] + a[2 ,0]*a[0,1]*a[3,2]*a[4,3]*a[1,4]

+ a[2,0]*a[0,1]*a[4,2]*a[1 ,3]*a[3,4] + a[2 ,0]*a[0,1]*a[4,2]*a[3,3]*a[1,4]

+ a[2,0]*a[1,1]*a[0,2]*a[3 ,3]*a[4,4] + a[2 ,0]*a[1,1]*a[0,2]*a[4,3]*a[3,4]

+ a[2,0]*a[1,1]*a[3,2]*a[0 ,3]*a[4,4] + a[2 ,0]*a[1,1]*a[3,2]*a[4,3]*a[0,4]

+ a[2,0]*a[1,1]*a[4,2]*a[0 ,3]*a[3,4] + a[2 ,0]*a[1,1]*a[4,2]*a[3,3]*a[0,4]

+ a[2,0]*a[3,1]*a[0,2]*a[1 ,3]*a[4,4] + a[2 ,0]*a[3,1]*a[0,2]*a[4,3]*a[1,4]

+ a[2,0]*a[3,1]*a[1,2]*a[0 ,3]*a[4,4] + a[2 ,0]*a[3,1]*a[1,2]*a[4,3]*a[0,4]

+ a[2,0]*a[3,1]*a[4,2]*a[0 ,3]*a[1,4] + a[2 ,0]*a[3,1]*a[4,2]*a[1,3]*a[0,4]

+ a[2,0]*a[4,1]*a[0,2]*a[1 ,3]*a[3,4] + a[2 ,0]*a[4,1]*a[0,2]*a[3,3]*a[1,4]

+ a[2,0]*a[4,1]*a[1,2]*a[0 ,3]*a[3,4] + a[2 ,0]*a[4,1]*a[1,2]*a[3,3]*a[0,4]

+ a[2,0]*a[4,1]*a[3,2]*a[0 ,3]*a[1,4] + a[2 ,0]*a[4,1]*a[3,2]*a[1,3]*a[0,4]

+ a[3,0]*a[0,1]*a[1,2]*a[2 ,3]*a[4,4] + a[3 ,0]*a[0,1]*a[1,2]*a[4,3]*a[2,4]

+ a[3,0]*a[0,1]*a[2,2]*a[1 ,3]*a[4,4] + a[3 ,0]*a[0,1]*a[2,2]*a[4,3]*a[1,4]

+ a[3,0]*a[0,1]*a[4,2]*a[1 ,3]*a[2,4] + a[3 ,0]*a[0,1]*a[4,2]*a[2,3]*a[1,4]

+ a[3,0]*a[1,1]*a[0,2]*a[2 ,3]*a[4,4] + a[3 ,0]*a[1,1]*a[0,2]*a[4,3]*a[2,4]

+ a[3,0]*a[1,1]*a[2,2]*a[0 ,3]*a[4,4] + a[3 ,0]*a[1,1]*a[2,2]*a[4,3]*a[0,4]

+ a[3,0]*a[1,1]*a[4,2]*a[0 ,3]*a[2,4] + a[3 ,0]*a[1,1]*a[4,2]*a[2,3]*a[0,4]

+ a[3,0]*a[2,1]*a[0,2]*a[1 ,3]*a[4,4] + a[3 ,0]*a[2,1]*a[0,2]*a[4,3]*a[1,4]

+ a[3,0]*a[2,1]*a[1,2]*a[0 ,3]*a[4,4] + a[3 ,0]*a[2,1]*a[1,2]*a[4,3]*a[0,4]
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+ a[3 ,0]*a[2,1]*a[4,2]*a[0 ,3]*a[1,4] + a[3 ,0]*a[2 ,1]*a[4,2]*a[1,3]*a[0,4]

+ a[3 ,0]*a[4,1]*a[0,2]*a[1 ,3]*a[2,4] + a[3 ,0]*a[4 ,1]*a[0,2]*a[2,3]*a[1,4]

+ a[3 ,0]*a[4,1]*a[1,2]*a[0 ,3]*a[2,4] + a[3 ,0]*a[4 ,1]*a[1,2]*a[2,3]*a[0,4]

+ a[3 ,0]*a[4,1]*a[2,2]*a[0 ,3]*a[1,4] + a[3 ,0]*a[4 ,1]*a[2,2]*a[1,3]*a[0,4]

+ a[4 ,0]*a[0,1]*a[1,2]*a[2 ,3]*a[3,4] + a[4 ,0]*a[0 ,1]*a[1,2]*a[3,3]*a[2,4]

+ a[4 ,0]*a[0,1]*a[2,2]*a[1 ,3]*a[3,4] + a[4 ,0]*a[0 ,1]*a[2,2]*a[3,3]*a[1,4]

+ a[4 ,0]*a[0,1]*a[3,2]*a[1 ,3]*a[2,4] + a[4 ,0]*a[0 ,1]*a[3,2]*a[2,3]*a[1,4]

+ a[4 ,0]*a[1,1]*a[0,2]*a[2 ,3]*a[3,4] + a[4 ,0]*a[1 ,1]*a[0,2]*a[3,3]*a[2,4]

+ a[4 ,0]*a[1,1]*a[2,2]*a[0 ,3]*a[3,4] + a[4 ,0]*a[1 ,1]*a[2,2]*a[3,3]*a[0,4]

+ a[4 ,0]*a[1,1]*a[3,2]*a[0 ,3]*a[2,4] + a[4 ,0]*a[1 ,1]*a[3,2]*a[2,3]*a[0,4]

+ a[4 ,0]*a[2,1]*a[0,2]*a[1 ,3]*a[3,4] + a[4 ,0]*a[2 ,1]*a[0,2]*a[3,3]*a[1,4]

+ a[4 ,0]*a[2,1]*a[1,2]*a[0 ,3]*a[3,4] + a[4 ,0]*a[2 ,1]*a[1,2]*a[3,3]*a[0,4]

+ a[4 ,0]*a[2,1]*a[3,2]*a[0 ,3]*a[1,4] + a[4 ,0]*a[2 ,1]*a[3,2]*a[1,3]*a[0,4]

+ a[4 ,0]*a[3,1]*a[0,2]*a[1 ,3]*a[2,4] + a[4 ,0]*a[3 ,1]*a[0,2]*a[2,3]*a[1,4]

+ a[4 ,0]*a[3,1]*a[1,2]*a[0 ,3]*a[2,4] + a[4 ,0]*a[3 ,1]*a[1,2]*a[2,3]*a[0,4]

+ a[4 ,0]*a[3,1]*a[2,2]*a[0 ,3]*a[1,4] + a[4 ,0]*a[3 ,1]*a[2,2]*a[1,3]*a[0,4]
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A.2.0 Data file format: .counted

In order to efficiently store coincidence-counting data generated by the DPC-230, we
designed a custom binary file format. These files, assigned the extension .counted,
are structured in records of three 4-byte words. The first word denotes the type of
data in the record, and the following two words encode that data, as follows:
First word Value Meaning

MAGIC 1337 Identifies the file as being .COUNTED format.

TEMPORARY_FILE 101 Marks the file up as being temporary

STOP_METADATA 102 Marks the end of the metadata header

SCAN_TYPE 103 101: Dip/fringe , 102: Static sample , 103: Scripted scan

SCAN_NSTEPS 201 Number of steps per loop

SCAN_NLOOPS 202 Number of repeated loops in total scan

SCAN_INTEGRATION_TIME 203 Integration time per measurement , ms

SCAN_CLOSE_SHUTTER 204 Whether or not the laser shutter was closed at the end of the scan

SCAN_DONT_MOVE 205 If true , motors were disabled during the scan

SCAN_MOTOR_CONTROLLER 206 Index number of the motor controller used.

SCAN_START_POSITION 207 Motor controller position at start of scan , mm / degrees

SCAN_STOP_POSITION 208 Motor controller position at end of scan , mm / degrees

SCAN_LABEL_NBYTES 250 Length in bytes of a text label , which follows this record

Measurement data

MOTOR_CONTROLLER_UPDATE 301 Records motor controller index and position.

SCAN_LOOP 302 Loop index

SCAN_STEP 303 Step index

INTEGRATION_STEP 304 Integration step number

STOP_INTEGRATING 305 Written when integration has finished

START_COUNT_RATES 401 Start a list of measured countrates

COUNT_RATE 402 Detection pattern as a binary string , and number of events

STOP_COUNT_RATES 403 End the list of countrates

START_PAUSE 404 Experimentalist paused the measurement

STOP_PAUSE 405 Experimentalist resumed the measurement

Now that the counting system is a little more mature, this format should really be
retired in favour of a less opaque standard.
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A.3.0 CNOT-MZ API

Much is made in the popular press of the potential impact and power of quantum
computing, however the subject is still treated with a certain amount of trepidation,
owing to the percieved difficutly of the field, creating barriers to entry for engineers
and scientists from other disciplines. In an effort to make quantum computing some-
what more tangible, we built an open-access interface to the CNOT-MZ, accessible
through a web browser. Users can run simulations of multiphoton experiments,
either through a graphical user interface (GUI), or using an hypertext transfer pro-
tocol (HTTP) JSON application protocol interface (API). Once granted permission,
they can then acquire data from the lab in real-time.

For further detail, see

https://cnotmz.appspot.com

Figure A.2: Accessible multiphoton simulation of the CNOT-MZ, running in a web
browser.
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Metadata

In writing my thesis, the PhD theses of my colleagues and forbears (notably Jonathan
Matthews, Alberto Politi, Alberto Peruzzo, Damien Bonneau, Dylan Saunders and
Nathan Langford) have been an indispensable source of detailed, relevant informa-
tion, clear explanation, and a model for the style and structure of a thesis.

In the hope that it might be useful to other PhD students going through the same
process, I include the dataset shown in figure B.1. This is a log of approximate word
count of my thesis, recorded every time I committed a revision to my git repository.
Three aspects of this figure are interesting: first, the striking linearity of the curve,
which I absolutely expected to be a polynomial with positive second derivative.
Second, one can easily identify regions of “burnout” directly after large streaks of
progress: I would suggest that this stop-start mode of operation be avoided as far
as possible. The last observation, I will leave as an exercise for the reader.
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